

Energy Technology Perspectives 2008 Scenarios and Strategies to 2050

Dr Peter Taylor

Acting Head, Energy Technology Policy Division

IEEJ Workshop, Tokyo, 7 July 2008

to 2050

Background

- Request for alternative scenarios by the G8 at the Gleneagles summit (2005)
- ETP2008 publication launched in Tokyo on 6 June 2008
- Conclusions reported to both G8 **Energy Ministers meeting (June)** and G8 Leaders summit (July)

IEEJ:2008年7月掲載

Goals of ETP2008

- This is a study about the role of technology in reducing CO₂ emissions
- It presents key technology roadmaps that specify development needs
- The results can support enhanced international technology cooperation
- It is not meant for country target setting in a post-Kyoto framework
- It is not a study about climate policy instruments

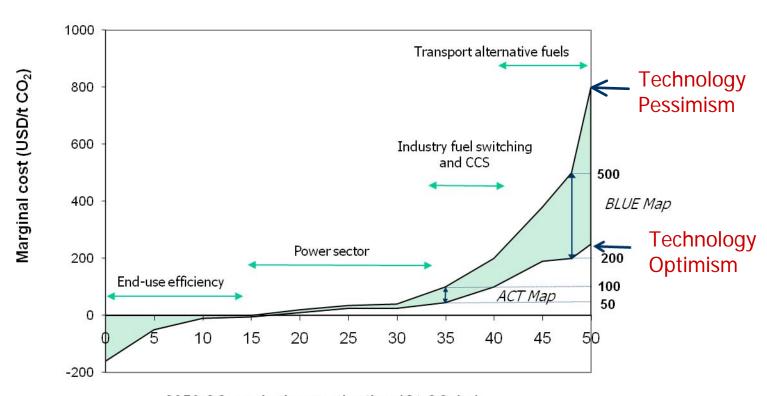
Content of ETP2008

- Scenario analysis
 - Baseline WEO2007 Reference Scenario
 - ► Global stabilization by 2050 (ACT)
 - ➤ Global 50% reduction by 2050 (BLUE) consistent with WEO2007 450 ppm case
- How to get there
 - Short and medium term technology policy needs
 - > Special attention for technology roadmaps
- Technology chapters
 - Power sector
 - **End-use sectors**

ACT Scenarios

- Energy CO₂ emissions in 2050 back to the level of 2005
- Revision of ACT as published in ETP2006
 - ▶Options with a marginal cost up to USD 50/t CO₂ – worldwide (model outcome)
 - Cost estimate has doubled from ETP2006
- ACT implies a significantly adjusted energy system

IEEJ:2008年7月掲載


BLUE Scenarios

- -50% energy related CO₂ in 2050, compared to 2005
 - > This could be consistent with 450 ppm (depending on post-2050 emissions trends)
- Options with a marginal cost of up to USD 200/t CO2 needed (model outcome)
 - > Significantly higher cost with less optimistic assumptions
- BLUE is uncertain, therefore a number of cases needed
- BLUE is only possible if the whole world participates fully
- BLUE implies a completely different energy system

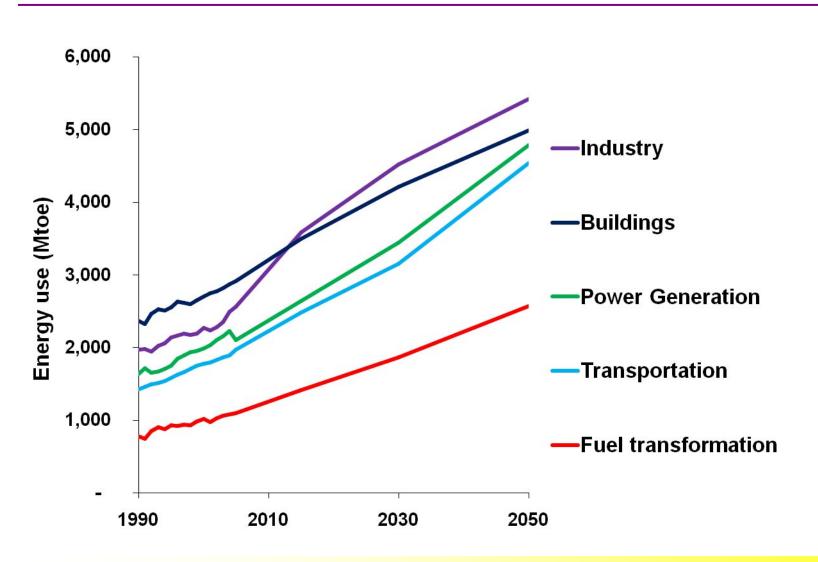
A New Energy Revolution?

2050 CO₂ emissions reduction (Gt CO₂/yr)

To bring emissions back to current levels by 2050 options with a cost up to USD 50/t are needed. Reducing emissions by 50% would require options with a cost up to USD 200/t.

ENERGY TECHNOLOGY PERSPECTIVES 2008

> Scenarios & Strategies to 2050


INTERNATIONAL

ENERGY

Sectoral Energy Use

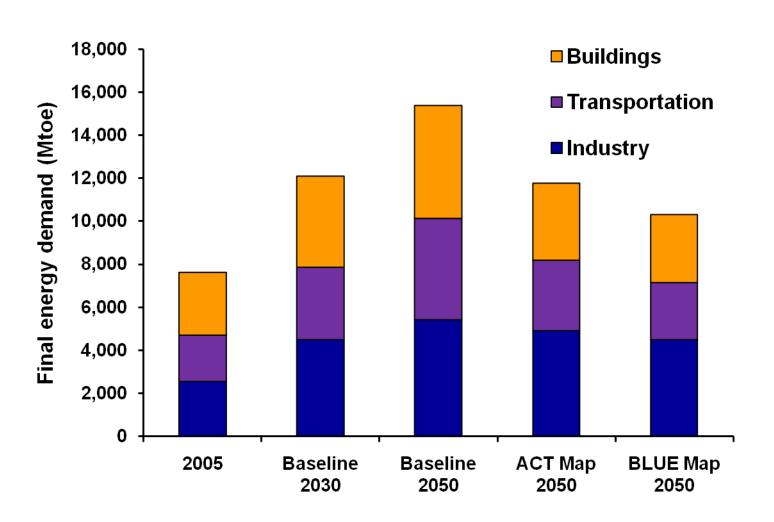
IEEJ:2008年7月掲載

GDP 2050 is four times that of 2005 (growth 3.3%/yr)

ENERGY TECHNOLOGY **PERSPECTIVES** 2008

> Scenarios & Strategies to 2050

INTERNATIONAL



Final Energy Use

IEEJ:2008年7月掲載

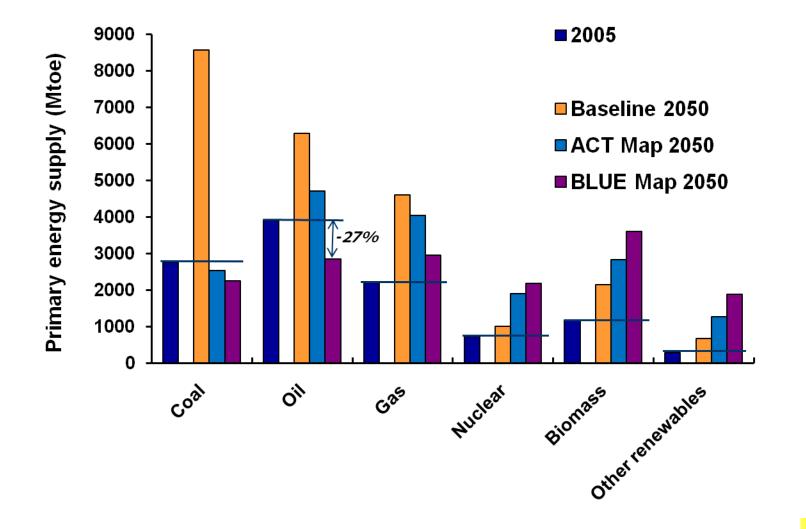
Doubles in Baseline, significant savings in Policy scenarios

ENERGY TECHNOLOGY **PERSPECTIVES** 2008

> Scenarios & Strategies to 2050

INTERNATIONAL

Primary Energy Demand Important supply security benefits


IEEJ:2008年7月掲載

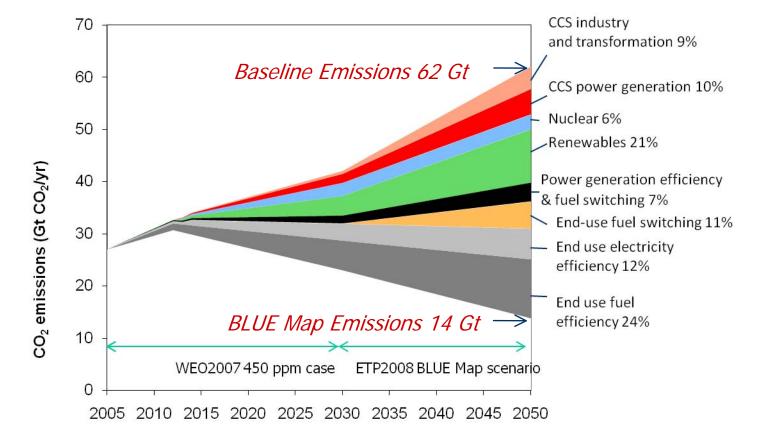
ENERGY
TECHNOLOGY
PERSPECTIVES
2 0 0 8

Scenarios & Strategies to 2050

INTERNATIONAL

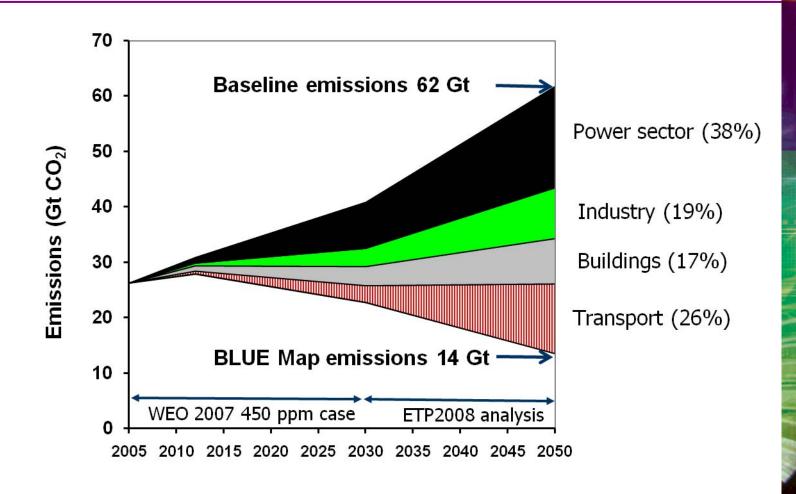
AGENCY

Contributions of Technology Wedges


ENERGY TECHNOLOGY **PERSPECTIVES** 2008

> Scenarios & Strategies to 2050

INTERNATIONAL


ENERGY

Sector Contributions

ENERGY TECHNOLOGY PERSPECTIVES 2008

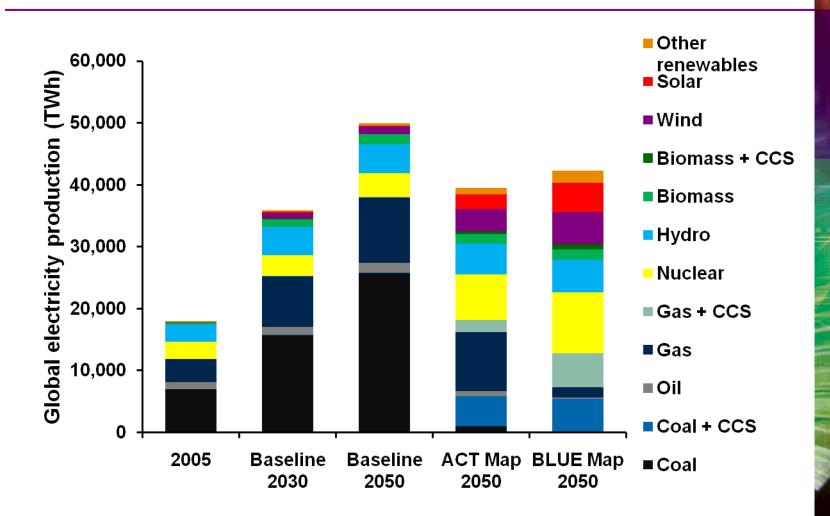
> Scenarios & Strategies to 2050

INTERNATIONAL

Emissions Reduction

	ACT	BLUE	ACT Map	BLUE Map
	Map	Map		
	[%]	[%]	[%]	[%]
Reference	2005	2005	Baseline	Baseline
			2050	2050
Power sector	-43	-71	-81	-90
Other	16	-62	-51	-84
transformation				
Transport	31	-30	-42	-69
Industry	65	-21	-18	-60
Buildings	-2	-41	-36	-61
Total	2	-48	-57	-78

ENERGY TECHNOLOGY **PERSPECTIVES** 2008


> Scenarios & Strategies to 2050

INTERNATIONAL

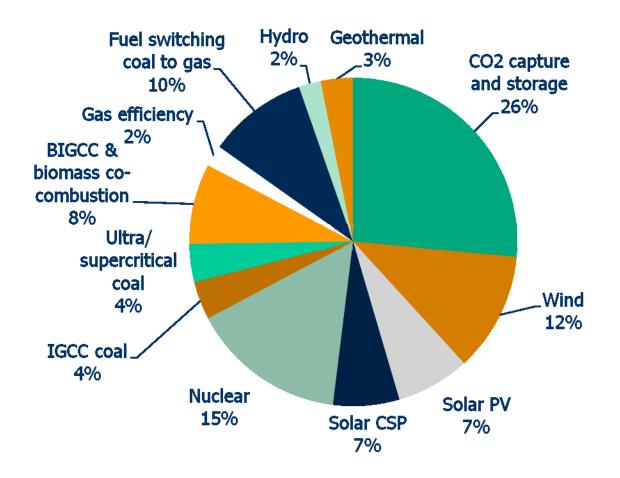
Power Generation Mix

1/4 nuclear and fossil + CCS, nearly half renewables

ENERGY
TECHNOLOGY
PERSPECTIVES
2 0 0 8

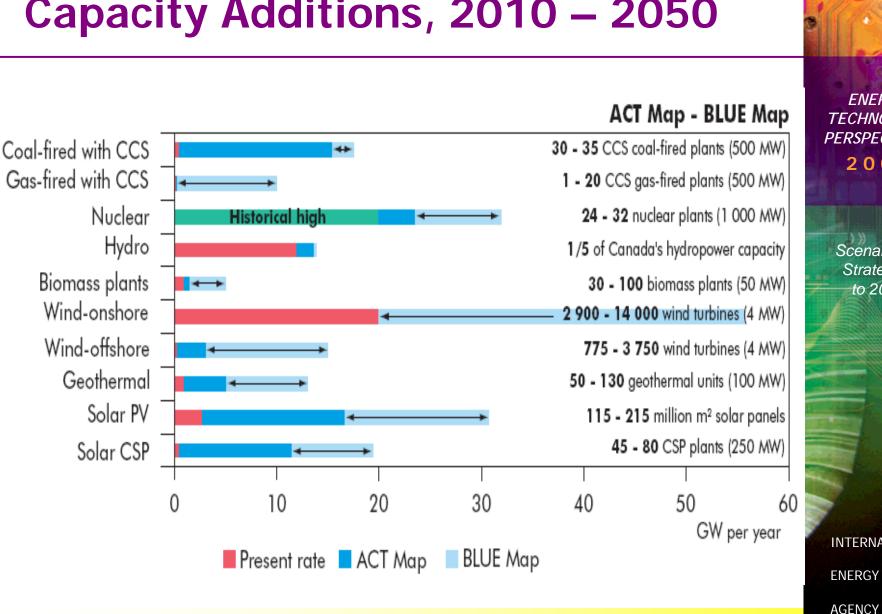
Scenarios & Strategies to 2050

INTERNATIONAL



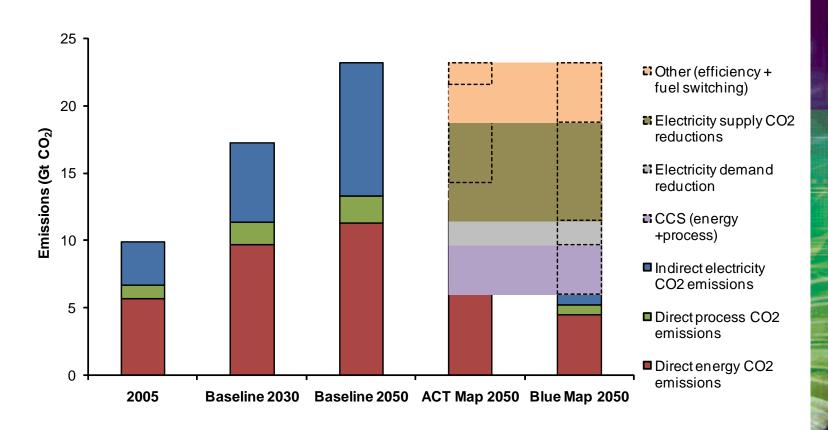
Power Sector CO₂ Reductions

BLUE Map 18 Gt CO₂ reduction


ENERGY
TECHNOLOGY
PERSPECTIVES
2 0 0 8

Scenarios & Strategies to 2050

INTERNATIONAL


Average Annual Power Generation Capacity Additions, 2010 - 2050

ENERGY TECHNOLOGY **PERSPECTIVES** 2008 Scenarios & Strategies to 2050 INTERNATIONAL

Industry CO₂ Reductions

ENERGY
TECHNOLOGY
PERSPECTIVES
2008

Scenarios & Strategies to 2050

INTERNATIONAL

ENERGY

Industry Technology Areas

- BAT potential 19-32%
 - Part of that will be taken up autonomously
- New technology is key
 - >CCS can play a special role
 - Life cycle perspective needed (systems options)
 - > Important opportunities for costeffective new technologies

Buildings & Appliances CO₂ Reductions

25 Fuel switching and 20 efficiency gains Emissions (Gt CO₂) ■ Electricity savings 15 # Electricity supply CO₂ reduction ■ Indirect electricity CO2 emissions ■ Gas ■ Oil 5 ■ Coal Baseline 2050 ACT Map 2050 BLUE Map 2050 2005 Baseline 2030

ENERGY TECHNOLOGY PERSPECTIVES

2008

Scenarios & Strategies to 2050

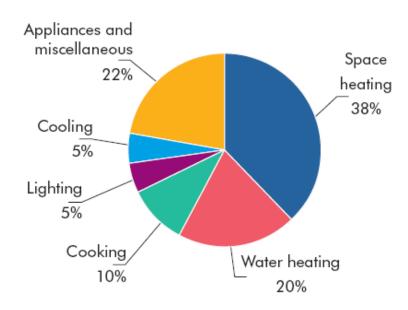
INTERNATIONAL



Buildings Sector Savings by Sector and End-use in BLUE Map

IEEJ:2008年7月掲載

ENERGY TECHNOLOGY **PERSPECTIVES** 2008

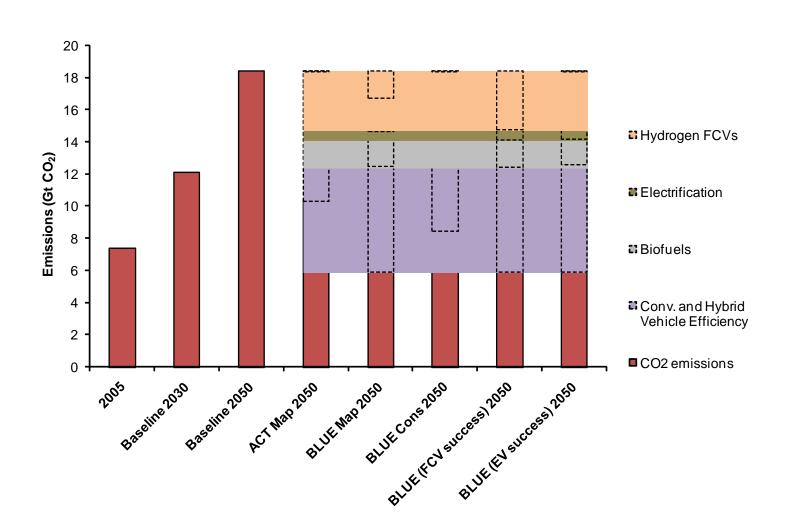

Scenarios & Strategies to 2050

13%

Service sector: 684 Mtoe savings

Residential sector: 1267 Mtoe savings

INTERNATIONAL


ENERGY

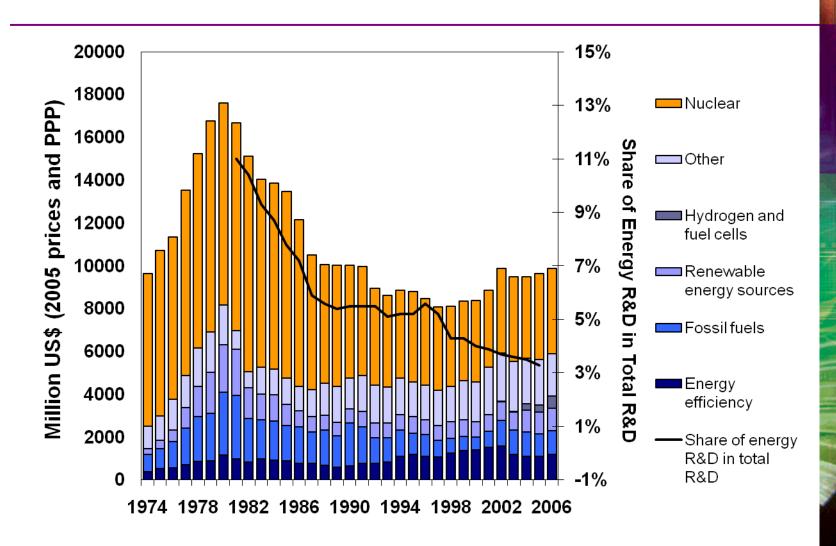
AGENCY

16%

Transport CO₂ Reductions

ENERGY
TECHNOLOGY
PERSPECTIVES
2 0 0 8

Scenarios & Strategies to 2050


INTERNATIONAL

ENERGY

Public RD&D Trends in IEA

ENERGY
TECHNOLOGY
PERSPECTIVES
2 0 0 8

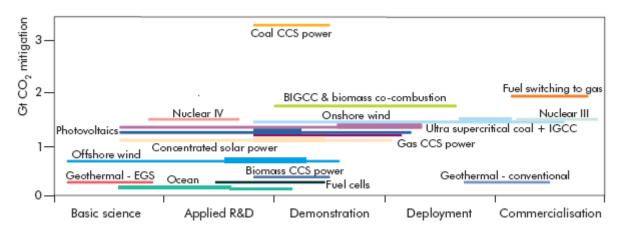
Scenarios & Strategies to 2050

INTERNATIONAL

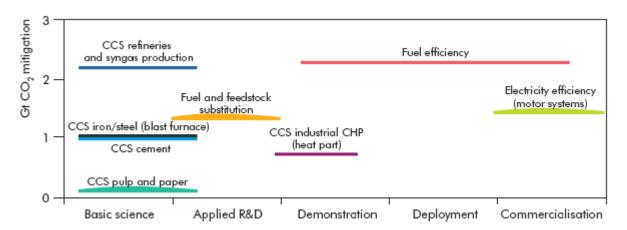
ENERGY

Private Sector RD&D Trends

- Private Sector Difficult to get a correct picture
 - Data deficiency
 - Difficulty of decomposing large conglomerates RD&D
 - Impact of non-energy related innovations
 - Increasingly complex pattern Privatisation
 - Top 10 Spenders (non-energy RD&D included)


Sector (in the 2000s)	2005 USD/yr
Power generation	2.2 – 2.6 billion
Oil and gas	4.0 – 5.2 billion
Automobiles	38 - 52 billion
Building	1.5 – 1.7 billion
Manufacturing	
Chemical	7 – 10 billion
Pulp and paper	600 – 640 million
Industrial metals	1.7 to 2.2. billion
Industrial equipment (global 8 firms)	13 – 15 billion

ENERGY TECHNOLOGY **PERSPECTIVES** 2008 Scenarios & Strategies to 2050 INTERNATIONAL **ENERGY AGENCY**



Technology RD&D Needs

Power generation

Industry

ENERGY
TECHNOLOGY
PERSPECTIVES
2 0 0 8

Scenarios & Strategies to 2050

INTERNATIONAL

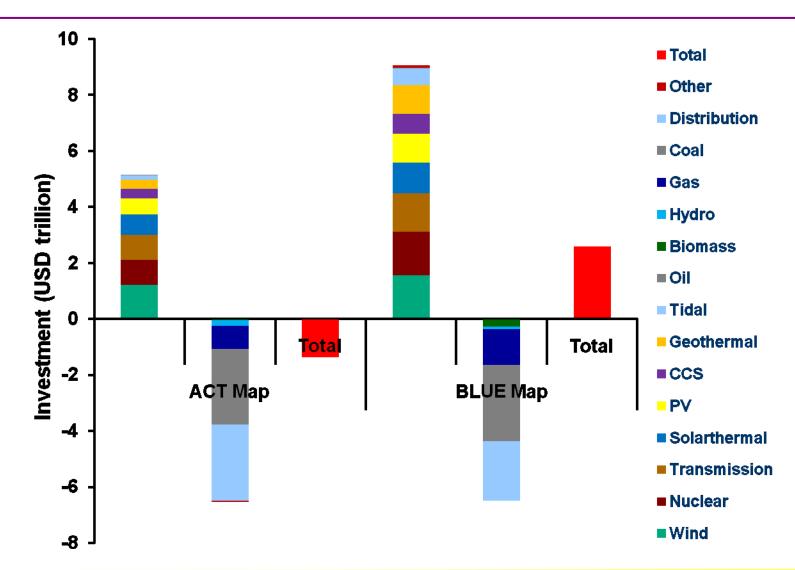
Energy RD&D – Key Messages

- Both public and private energy RD&D investments have declined since the early 1980s
- Current IEA Governments energy RD&D USD 10 billion/yr
- Nuclear dominates government RD&D
- Companies energy RD&D USD 40-60 billion/yr
- Information about industrial energy RD&D trends is scarce
- Unclear how much RD&D would be "sufficient" to meet the goals
 - Literature suggests USD 10-100 billion/yr additional investments
- Leave it to industry or role for government?
- Cooperation or competition model ?

Total Cumulative Investment Needs (2005-2050)

60 Investment (USD trillion) 50 ■ Total ■ Distribution 40 ■ Transformation 30 **■** Commercial 20 ■ Industry **■** Power Plant 10 Transmission 0 Residential Total **Total** -10 **■ Transport ACT Map BLUE Map**

Demand-side investments dominate additional investment needs above the Baseline scenario, energy efficiency helps to reduce upstream investment needs in energy supply and transportation infrastructure

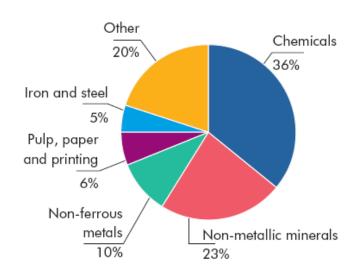

ENERGY
TECHNOLOGY
PERSPECTIVES
2 0 0 8

Scenarios & Strategies to 2050

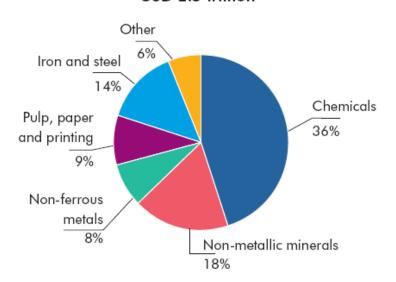
INTERNATIONAL

ENERGY

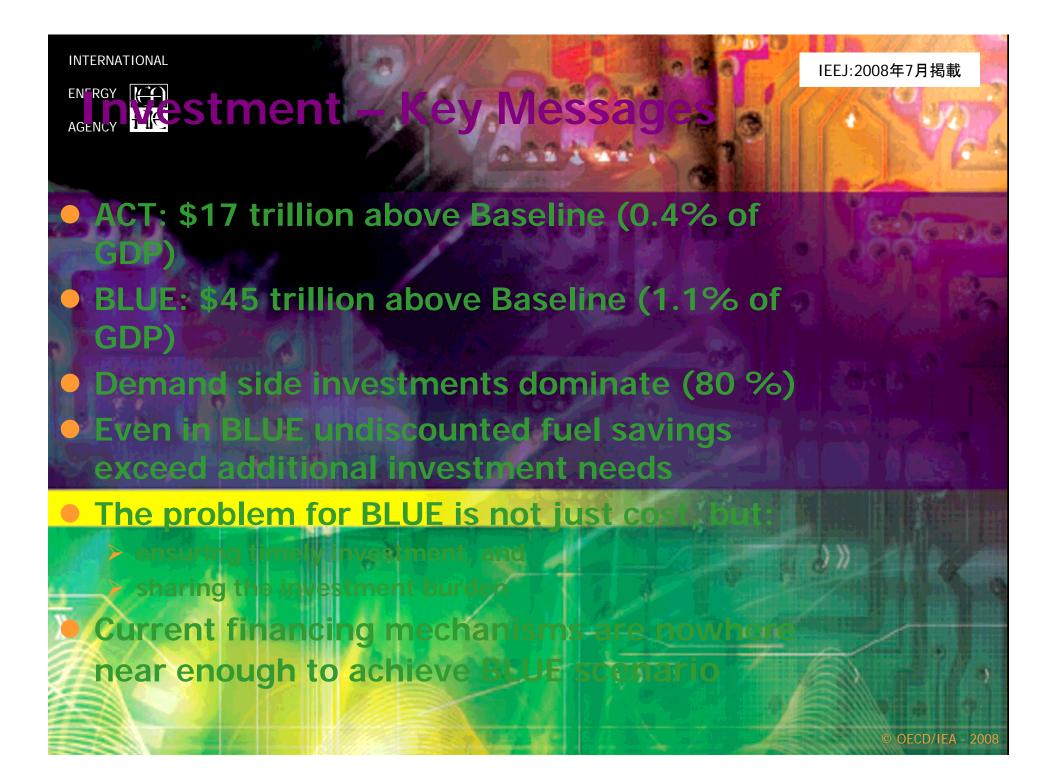
Cumulative Additional Investment in the Electricity Sector (2005-2050)



ENERGY TECHNOLOGY **PERSPECTIVES** 2008 Scenarios & Strategies to 2050 INTERNATIONAL **ENERGY**


IEEJ:2008年7月掲載

Cumulative Additional Investment in Industry (2005-2050)


USD 0.6 trillion

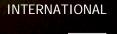
USD 2.5 trillion

Roadmaps

17 technology roadmaps provide 87% of CO₂ savings under the Blue scenario

- Potentials
- Pathways to commercialization
- Technology targets
- How to get there
- Key actions needed
- Key areas for international cooperation

Key Technology Options (Roadmaps)

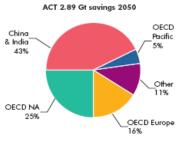

IEEJ:2008年7月掲載

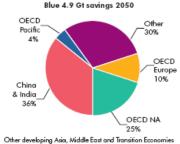
- Supply side
 - CCS power generation
 - Nuclear III + IV
 - Wind
 - Biomass IGCC & co-combustion
 - Solar PV
 - Solar CSP
 - Coal IGCC
 - Coal USCSC
 - > 2nd generation biofuels

- **Demand side**
 - Energy efficiency in buildings
 - Heat pumps
 - Solar space and water heating
 - Energy efficiency in transport
 - Electric and plug-in vehicles
 - > Fuel cell vehicles
 - CCS in industry
 - Industrial motor systems

Scenarios & Strategies to 2050

AGENCY


Roadmaps – Example CCS 10% of CO₂ reduction potential in BLUE Map


IEEJ:2008年7月掲載

ENERGY TECHNOLOGY PERSPECTIVES 2 0 0 8

Scenarios & Strategies to 2050

CO₂ Capture and Storage - Fossil-Fuel Power Generation

	Global Deployment Share 2030	RDD&D Inv. Cost USD bn 2005-2030	Commercial Inv. Cost* USD bn 2030-2050
OECD NA	35%	25-30	160-180
OECD Europe	35%	25-30	100-120
OECD Pacific	10%	7-8	30-40
China & India	15%	10-12	280-300
Other	5%	3-4	60-70

	Global Deployment Share 2030	RDD&D Inv. Cost USD bn 2005-2030	Commercial Inv. Cost* USD bn 2030-2050
OECD NA	35%	30-35	350-400
OECD Europe	35%	30-35	150-200
OECD Pacific	10%	10-12	70-80
China & India	15%	12-14	450-500
Other	5%	4-5	300-350

CCS power plant

	ACT: Emissions Stabilisation	BLUE: 50% Emissions reduction	
RD&D			
Capture technologies for three main options (post-combustion, pre-combustion, and oxy-fuelling)	Technologies tested in small- and large-scale plants. Cost of CO ₂ avoided around 50 USD/t by 2020. Chemical looping tested		
Demonstration targets	20 large-scale demo plants with a range of CCS options, including fuel type (coal/gas/biomass) by 2020	30 large-scale demo plants with a range of CCS options, including fuel type (coal/gas/biomass) by 2020	
New gas-separation technologies: membranes & solid adsorption	New capture concepts: next-generation processes, such as membranes, solid absorbers and new thermal processes		
Technology transfer	Technology transfer to China and India	Technology transfer to all transition and developing countries	
Deployment			
Regional pipeline infrastructure for CO ₂ transport	Major transportation pipeline networks developed and CO ₂ maritime shipping		
Deployment targets	Early commercial large-scale plants	30% of electricity generated from	

by 2015 (ZEP, ZeroGen, GreenGen)

Technology Targets

Storage R&D 2008-2030: USD 1 bn Technology limited to enhanced hydrocarbon recovery and storage 10 demo capture plants 2008-2025: USD 12 bn in depleted reservoir 2008-2020: USD 25 bn Development of Storage R&D regional transport 9 % of power 16 % of power 2008-2030: USD 2bn 2015-2030 by 2050 Basin capacity estimates 2008-2015: plants 2015-2030 12 % of power USD 15 bn 30 % of power by 2030 Major DSF Development of by 2050 transport infrastructure 2010-2020

Technology Timeline

Key Actions Needed

- Develop and enable legal and regulatory frameworks for CCS at the national and international levels, including long-term liability regimes and classification of CO₂.
- Incorporate CCS into emission trading schemes and clean development mechanisms.
- RD&D to reduce capture cost and improve overall system efficiencies.
- RD&D for storage integrity and monitoring. Validation of major storage sites. Monitor and valuation methods for site review, injection & closure periods.
- Raise public awareness and education on CCS.
- Assessment of storage capacity using Carbon Sequestration Leadership Forum methodology at the national, basin and field levels.
- New power plants built after 2020 to have CCS.
- New power plants to be "capture-ready" after 2015.

Key Areas for International Collaboration

- Development and sharing of legal and regulatory frameworks.
- Develop international, regional and national instruments for CO₂ pricing, including CDM and ETS.
- Raise public awareness and education.
- Sharing best practices and lessons learnt from demonstration projects (pilot and largescale).
- Joint funding of large-scale plants in developing countries by multi-lateral lending institutions, industry and governments.
- Development of standards for national and basin storage estimates and their application.
- Organizations: CSLF, IEA GHG, IEA CCC, IPCC.

IEEJ:2008年7月掲載

Roadmaps – Example Efficiency Buildings and Appliances

15% of CO₂ reduction potential in BLUE Map

2 200-2 500

Energy efficiency in buildings and appliances ACT 6.5 Gt CO savings 2050 BLUE 7.0 Gt CO, savings 2050 OECD OECD OECD NA OECD NA Europe Europe 24% 18% 16% Other Other 21% OECD Pacific China and India OECD Pacific China and India Commercial Commercial Inv. Cost Inv. Cost USD bn USD bn 2005-2050 2005-2050 OECD NA 1 100-1 200 OECD NA 1 500-1 700 **OECD Europe** 850-950 **OECD Europe** 950-1050 OECD Pacific 300-400 **OECD Pacific** 450-550 China & India 1 500-1 800 1 000-1 200 China & India

1 800-2 000

Other

Technology targets

Other

	ACT: Emissions Stabilisation	BLUE: 50% Emissions Reduction	
Diffusion			
Limit standby power use to 1-Watt.	Implemented in OECD countries between now and 2030; and globally by 2040	Implemented in OECD countries between now and 2020; and globally by 2030	
Tighten or establish minimum energy efficiency standards for all major existing appliances	New appliances standards shifted to LLCC between now and 2020 in OECD and by 2030 globally	New appliance standards shifted to BAT between now and 2020 in OECD and globally by 2030.	
Mandatory standards across full range of mass-produced equipment	Appliances brought under standards by 2030 in OECD and by 2040 globally	Standards for appliances by 2020 in OECD and 2030 globally. Continuous tightening required	
Building codes	Cold countries at "low-energy" standard from 2015 and globally from 2030	Cold countries to meet "passive house" levels by 2015, and globally from 2030	
Adopt best practice in lighting efficiency	Policy must shift to LLCC from 2015	Policy must begin shift to BAT from 2025 onwords	
Promote low-energy houses and fuel switching	Simplified planning requirements to encourage low-energy buildings and alternative fuel sources (especially solar)		

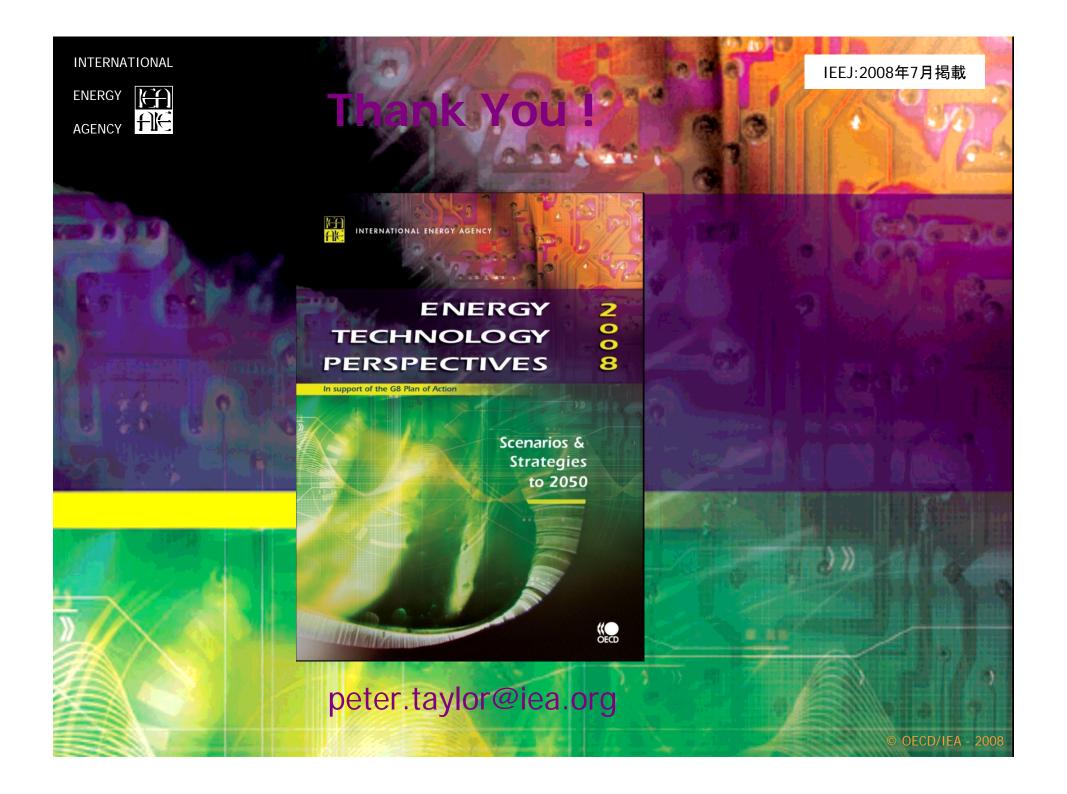

Technology timeline RD&D activities to improve Technologies already technologies' technical and economic performance RD&D activities to improve Mandatory standards by Technologies already technologies' technical 2020 in OECD and 2030 globally and economic performance New technologies Mandatory standards by Technologies already developed and deployed 2020 in OECD and commercial for even higher energy efficiency 2030 globally, continues tightening Commercialisation

Key actions needed

- Monitor energy efficiency improvements in existing buildings and appliances. Need to collect consistent and comprehensive data on end-use consumption and energy efficiency worldwide.
- Implementation of mandatory minimum efficiency performance standards (MEPS), harmonised at a high level of efficiency and implemented worldwide, ongoing tightening will be required.
- International standards need to be reviewed regularly to ensure adequate vigor.

Key areas for international collaboration

- Establish a common set of efficiency "tiers" from which countries could draw when they
 establish minimum energy performance standards.
- Facilitate the rapid exchange of BAT in the buildings sector to ensure rapid uptake worldwide.
- Promote the diffusion of passive house design, construction techniques and energy technologies.


Key Messages from ETP2008

- Deep emission cuts are technically achievable
 - Significant investment required
 - Credible long-term targets needed
- This change is urgent
 - Capital stock turnover is slow
 - Technology development needs time
 - Non-cost barriers should be addressed
- Global energy technology revolution needed
 - Cooperation with DCs is essential

ENERGY TECHNOLOGY PERSPECTIVES 2 0 0 8 Scenarios & Strategies to 2050

INTERNATIONAL

