Status and prospects of geothermal energy in Europe – and the achievements of Switzerland

Ladislaus Rybach GEOWATT AG Zürich

The Institute of Energy Economics, Japan Tokyo, 12 October 2006

CH - 8050 Zürich

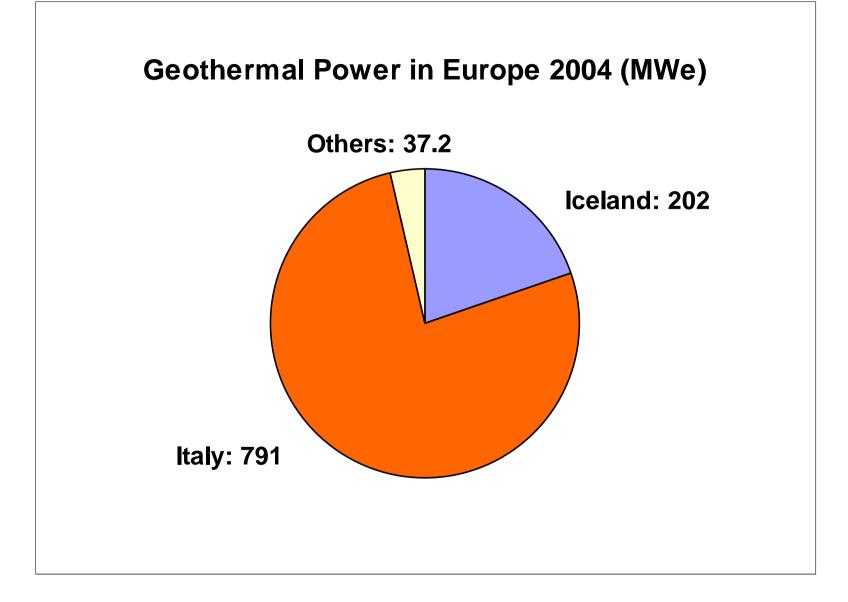
PRESENTATION STRUCTURE

- status of geothermal energy in Europe (separately for power generation and for direct use)
- development trends
- possible future options
- Achievements of Switzerland

Electricity generation from renewables (refers to 2005)

	Installed capacity in GW _{el}		Electricity g in TW	eneration /h/a
	World	EU	World	EU
Hydro power	750.0	127.0	2,804	741
Run-off-river/Storage plants	750.0	127.0	2,803	740
 Tidal power plants 	0.3	0.2	< 1	< 1
Wind energy	47.9	34.4	74 – 88	55
Solar energy	3.0	1.0	3 - 4	< 1
 Solarthermal systems 	0.4		< 1	
Photovoltaic systems	2.6	1.0	2-3	< 1
Geothermal energy	8.9	0.8	57	6
Biomass	47.8	11.3	190 - 300	57
 Solid biofuels 	37.0	6.2	150 - 260	35
 Organic waste 	7.6	3.3	21	10
 Biogas (OECD-countries) 	3.2	1.8	19	12
Total	approx. 857.6	approx. 174.5	approx. 3,190	approx. 859

DATA BASE

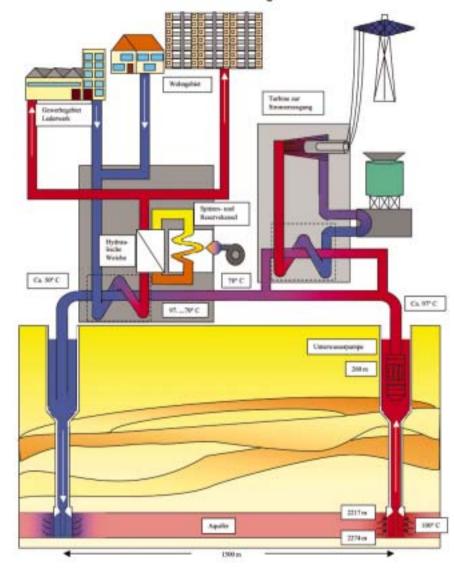

WGC2005 was held in Antalya/Turkey, 25-29 April 2005. From the country reports submitted, two overview papers have been elaborated:

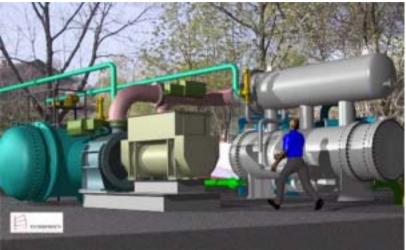
- Bertani, R. (2005): World geothermal power generation in the period 2001-2005. Geothermics <u>34</u>, 651-690
- Lund, J.W., Freeston, D.E., Boyd, T.I. (2005): Direct application of geothermal energy. Geothermics <u>34</u>, 691-727

Geothermal power in Europe (from Bertani 2005)

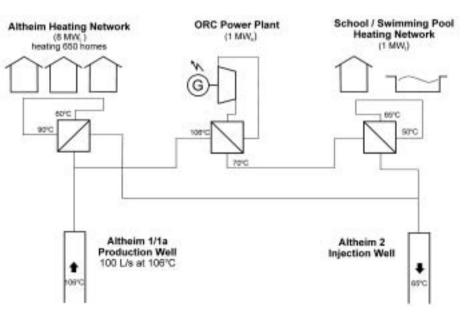
Country	Installed Capacity [MWe]	Running Capacity [MWe]	Annual Energy Produced [GWh/y]	Number of Units	% of National Capacity	% of National Energy
Austria	1.2	1.1	3.2	2	Negligible	Negligible
Germany	0.2	0.2	1.5	1	Negligible	Negligible
Iceland	202	202	1483	19	13.7	17.2
Italy	791	699	5340	32	1.0	1.9
Portugal (San Miguel island)	16	13	90	5	25*	n/a*
Turkey	20	18	105	1	Negligible	Negligible
Total	1030.4	933.3	7022.7	60		
in Europe					-	-
proper						
France (Guadeloupe island)	15	15	102	2	9*	n/a*
Russia (Kamtchatka)	79	79	85	11	Negligible	Negligible
GRAND TOTAL	1124.4	1027.3	7290.7	73	-	-

*) Local capacity (Azores islands, Guadeloupe)





Neustadt-Glewe, Germany 200 kWe ORC


Schema der Erdwärmenutzung in Neustadt-Glewe

- Altheim, Austria
- •1 MWe ORC
- •10 MWt 4.7¢/kWh
- •Well: 2,300 m
- •106°C @ 100 L/s

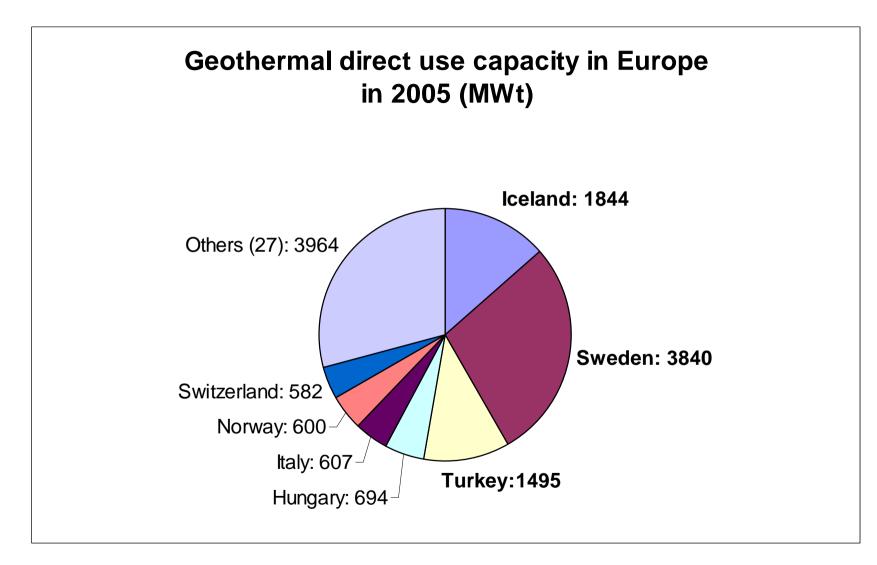
Direct use status

- Various direct uses (for space heating, agriculture, balneology etc.) are reported
- from 34 European countries
- The totals yield 13 GWt and 132'000 TJ/yr.

WORLD DIRECT-USE 2005

<u>Region</u>	<u>MWe (%)</u>	<u>GWh/yr (%)</u>
Africa	0.7	1.1
Americas	32.3	16.7
Asia	20.9	29.4
<u>Europe</u>	44.6	49.0
Oceania	1.5	3.8

(from J. Lund, 2005)

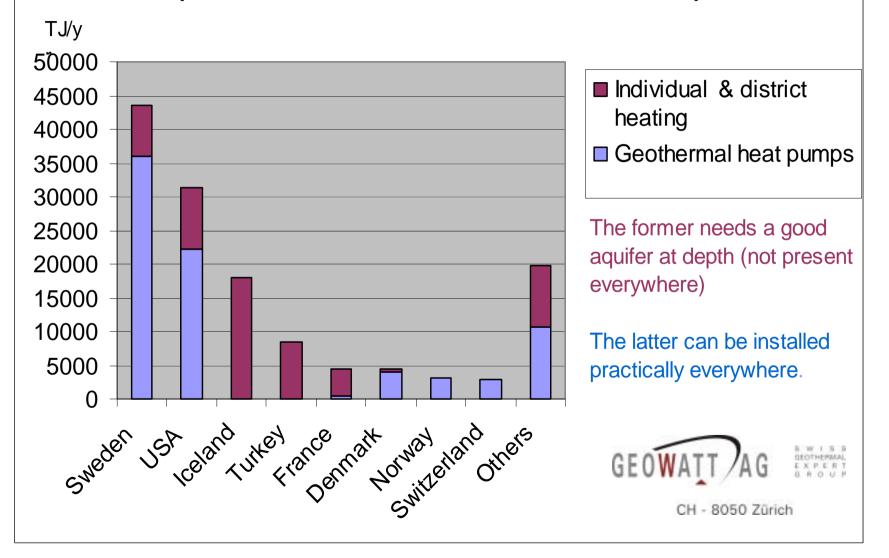

IEEJ:October 2006 GEOTHERMAL DIRECT USE IN EUROPE IN 2004,

from Lund et. al. (2005)

Country	Capacity MWt	Use TJ/yr	Capacity Factor
Albania	9.6	8.5	0.03
Austria	352.0	2229.9	0.20
Belarus	2.0	13.3	0.21
Belgium	63.9	431.2	0.21
Bulgaria	109.6	1671.5	0.48
Croatia	114.0	681.7	0.19
Czech Republic	204.5	1220.0	0.19
Denmark	330.0	4400.0	0.42
Finland	260.0	1950.0	0.24
France	308.0	5195.7	0.53
Georgia	250.0	6307.0	0.80
Germany	504.6	2909.8	0.18
Greece	74.8	567.2	0.24
Hungary	694.2	7939.8	0.36
Iceland	<mark>1844.0</mark>	<mark>24500.0</mark>	<mark>0.42</mark>
Ireland	20.0	104.1	0.17
Italy	606.6	7554.0	0.39

(Table continued)

		1	
Lithuania	21.3	458.0	0.68
Macedonia	62.3	598.6	0.30
Netherlands	253.5	685.0	0.09
Norway	600.0	3085.0	0.16
Poland	170.9	838.3	0.16
Portugal	30.6	385.3	0.40
Romania	145.1	2841.0	0.62
Russia	308.2	6143.5	0.63
Serbia	88.8	2375.0	0.85
Slovak Republic	187.7	3034.0	0.51
Slovenia	49.6	729.6	0.47
Spain	22.3	347.2	0.49
Sweden	<mark>3840.0</mark>	<mark>36000.0</mark>	<mark>0.30</mark>
Switzerland	581.6	4229.3	0.23
Turkey	<mark>1495.0</mark>	<mark>24839.9</mark>	<mark>0.53</mark>
Ukraine	10.9	118.8	0.35
United Kingdom	10.2	45.6	0.14
TOTAL	13625.8	132037.8	



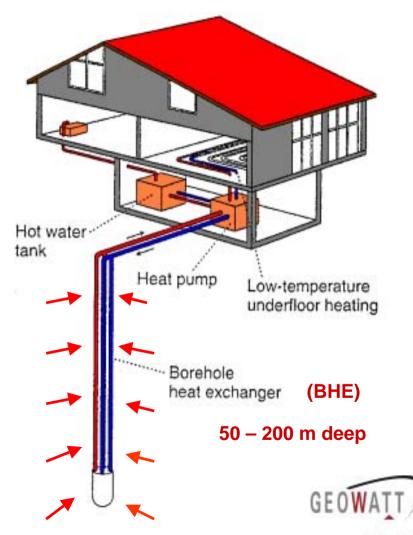
In Iceland: 88 % of all buildings

In the Paris area: over 100'000 apartments

are supplied by geothermal district heating

IEEJ:October 2006 Geothermal heating in IEA countries in 2004 (data from Lund et al. 2005, WGC2005)

IEEJ:October 2006 GEOTHERMAL HEAT PUMPS IN EUROPE 2004,


26 countries (after J. Lund, 2005)

Country	Installed capacity (MW _{th})	Annual energy use (TJ/yr)	Equivalent 12 kW units*
Austria	300.0	1'450.0	25 000
Belarus	0.5	3.3	42
Belgium	60.0	324.0	5 000
Bulgaria	0.3	4.4	25
Czech Republic	200.0	1 130.0	16 667
Denmark	309.0	3 940.0	25 750
Finland	260.0	3 940.0 1 950.0	25 750
France	16.1	468.8	1 342
	-		-
Germany	400.0	2 200.0	33 333
Greece	4.0	39.1	333
Hungary	4.0	22.6	333
Iceland	4.0	20.0	333
Ireland	19.6	83.6	1 633
Italy	120.0	500.0	10 000
Lithuania	21.3	458.0	1 775
Netherlands	253.5	685.0	21 125
Norway	600.0	3 085.0	50 000
Poland	103.6	574.4	8 633
Portugal**	0.2	0.0	17
Russia	1.2	11.5	100
Serbia	6.0	40.0	500
Slovak Republic	1.4	12.1	117
Slovenia	3.9	89.1	325
Sweden	3 840.0	36 000.0	320 000
Switzerland	532.4	2 854.0	44 367
United Kingdom	10.2	45.6	850
TOTAĽ	6'921.2	55'219.5	576'767

*) 12 kW is the typical size for a residential unit

**) the one unit in Portugal is not operational – thus zero value for annual energy.

IEEJ:October 2006 Geothermal heat pump with BHE

BHE drilling and installation

CH - 8050 Zürich

AG

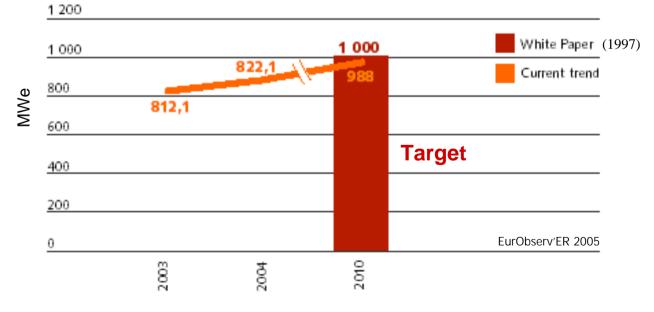
Worldwide ranking results (in order) of geothermal heat pump utilization in 2004, from Rybach (2005)

Capacity	Energy use	Capacity per	Capacity per capita	Energy per area	Energy per capita	Units per area
installed(MW _{th})	(TJ/yr)	area (Wt/km ²)	(Wt/capita)	(TJ/yr per km ²)	(GJ/yr per capita)	(12 kW equiva
						units per km ²)
1. USA	1. Sweden	1. Switzerland	1. Sweden	1. Denmark	1. Sweden	1. Switzerland
2. Sweden	2. USA	2. Sweden	2. Norway	2. Sweden	2. Denmark	2. Sweden
3. China	3. China	3. Denmark	3. Switzerland	3. Switzerland	3. Norway	3. Denmark
4. Switzerland	4. Denmark	4. Netherlands	4. Denmark	4. Austria	4. Netherlands	4. Netherlands
5. Norway	5. Switzerland	5. Austria	5. Finland	5. Netherlands	5. Switzerland	5. Austria

In terms of the weighted figures (capacity or energy per country area or population), the lead is clearly held by Nordic/Scandinavian countries, with Sweden being the champion.

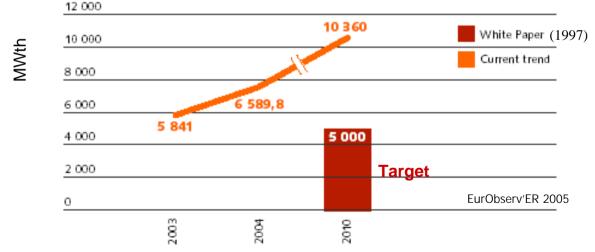
In terms of fictitious medals, the results are as follows:

- Gold to Sweden 3x, Switzerland 2x, Denmark and USA 1x
- Silver to Sweden 4x, Denmark, Norway and USA 1x
- Bronze to China, Denmark and Switzerland 2x, Norway 1x.


DEVELOPMENT TRENDS

- Over the past years, significant growth took place in power generation as well as in direct use.
- Whereas the increase for power generation was relatively modest, a strong and continuous increase took place in direct use, especially for geothermal heat pumps.
- For example, the drilling for borehole heat exchanger (BHE) installations in Switzerland over the past years shows a typical increase (details see later).

Geothermal power in EU: current trend


Cumulated announced efforts will bring European Union capacity up to

988 MW, i.e. a little less than the objective set by the European Commission

Geothermal heat in EU: current trend

- ✓ For medium to low temperature heat an increase of 50 MW per year until 2010 seems a reasonable assumption, which will bring capacity up to 2 360 MWth
- ✓ Geothermal heat pumps could reach 8 000 MW capacity in 2010 if average annual growth rate of 10% is maintained

The Commission will work towards legislation on renewable energy in heating in 2006

FUTURE PROSPECTS

- Generally it will be crucial to secure the sustainability of production.
- For <u>power generation</u> this has been successfully achieved for the Larderello field (Italy) whereas the example of The Geysers (USA) shows that even sophisticated and costly solutions can lead to partial success only, besides creating unwanted side effects like man-made seismicity.
- For <u>direct use</u> and especially for geothermal heat pumps the sustainability can be secured by proper design.

The future prospects can be viewed on the short and on the long term.

On the <u>short term</u> significant speeding-up in geothermal power development can be expected in some countries (Iceland, Turkey...)

A further, accelerating advance of geothermal heat pumps can definitely be expected

- in countries so far not yet or only marginally applying this technology (e.g. Spain)
- and by progress in new applications like combined heating/cooling or energy piles (foundation piles equipped by heat exchanger tubing).

On the <u>long term</u> the prospects depend on the success of the Enhanced Geothermal Systems (EGS).

EGS steam production at Soultz s.F., June 2005

IEEJ:October 2006 Table 8. Guaranteed <u>feed-in tariffs</u> (FIT, in Eurocents/kWh) for electricity from renewable sources in Europe. From energie extra 3.03, Swiss Federal Office of Energy, Berne (2003), EU Green-X (2004), Bundesgesetzblatt 2004, Teil I, Nr. 40

Energy source	Austria	Germany	France	Luxembourg	Portugal	Spain
Solar PV	47 – 60	54.0 – 57.4	15.2 – 30.5	45	22.4 – 41.0	180 - 360
Wind	7.8	5.5 – 6.2	3.05 - 8.38	2.5	4.3 – 8.3	2.7
Biomasse	2.7 – 16.5	8.4 – 11.5	4.5 – 4.9	2.5	0	2.5 – 3.3
Small hydro	3.15 – 6.25	6.65 – 9.67	5.49 – 6.10	2.5	7.2	2.9
Geothermal	7.0	7.16 – 15.0	7.62	0	0	0

S. Clastingh et al. / Quaternary Science Reviews 24 (2005) 241-304

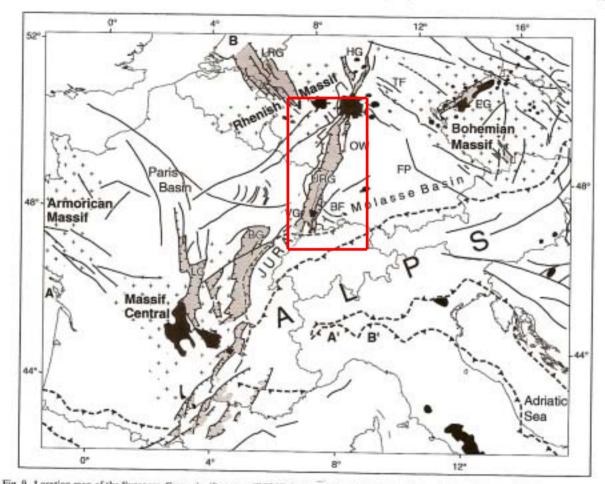


Fig. 9. Location map of the European Cenozoic rift system (ECRIS) in the Alpine and Pyrenean foreland, showing Cenozoic fault systems (black lines), rift-related sedimentary basins (light gray), Variscan massifis (cross pattern) and volcanic fields (black). Solid barbed line: Variscan deformation front; stippled barbed line: Alpine deformation front. BF, Black Forest; BG, Bresse Graben; EG, Eger (Ohre) Graben; FP, Franconian Platform; HG, Hessian Grabens; LG, Limagne Graben, LRG, Lower Rhine (Roer Valley) Graben; URG, Upper Rhine Graben; OW, Odenwald; VG, Vorges (after Dézes et al., 2004).

Cloeting et al. (2005)

255

IEEJ:October 2006 German projects for geothermal power and heat production in the Upper Rhine Valley (status in summer 2006)

Bruchsal Karlsruhe Karlsruhe-Nord Hockenheim-Philippsburg Rastatt-Lichtenau-Rheinau Weinheim (only heat production) Neuried-Altenheim Mannheim Emmendingen Kehl am Rhein Dinkelberg **Breisach** Markgräfler Land Lahr Offenburg Neuried-Ichenheim Neuenburg am Rhein Heidelberg Goldscheuer Freiburg-West Schwetzingen

Bietigheim Schriesheim Wiesloch Karlsdorf Rhust-Whyl Freiburg-West (balneology, heat production – online) Speyerdorf Landau in der Pfalz Offenbach an der Queich Bellheim Speyer Riedstadt Bad Bergzabern Steinfeld

A total of 35

.

Baumgärtner (2006)

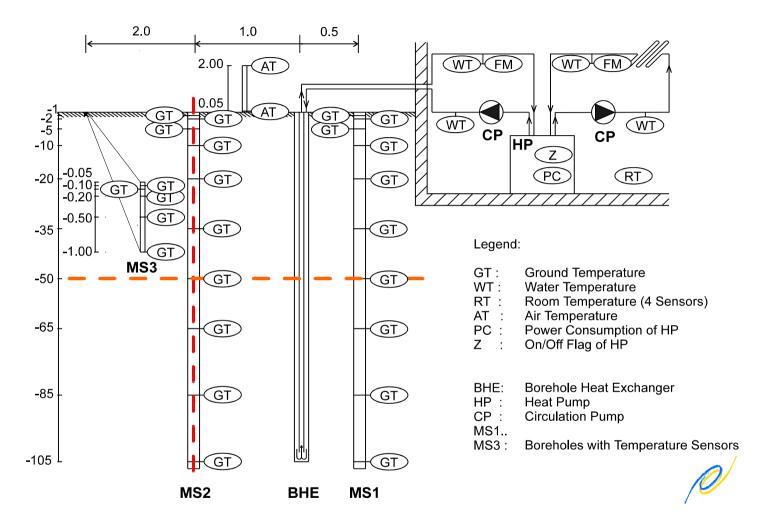
CONCLUSIONS - Europe overwiew

- Europe will further develop ist lead in direct use, especially with GHPs;
- Soaring oil prices and CO₂ tax help;
- Small power generation units are appearing on the scene (ORMAT / Kalina); feed-in tariffs help;
- There is increasing interest for EGS, also of decision makers;
- Many projects are underway.

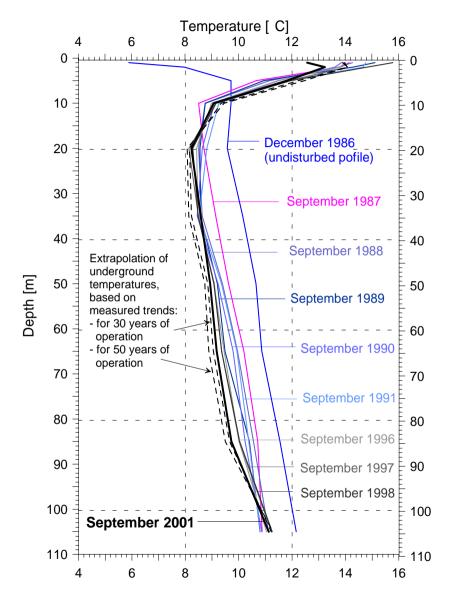
PRESENTATION STRUCTURE

- status of geothermal energy in Europe (separately for power generation and for direct use)
- development trends
- possible future options

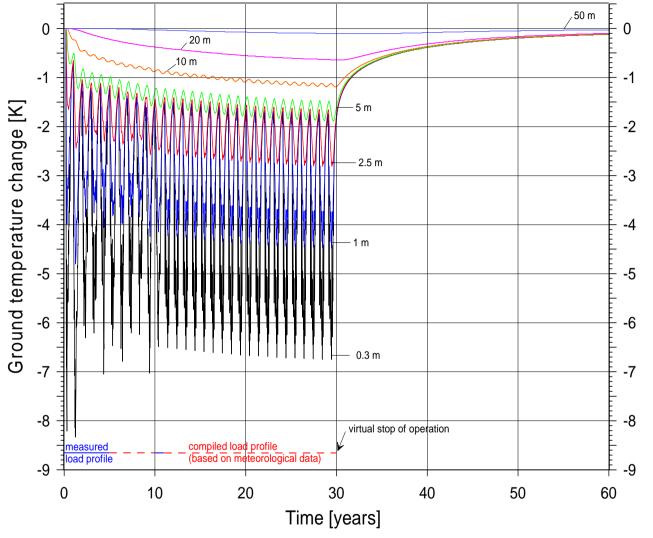
Achievements of Switzerland

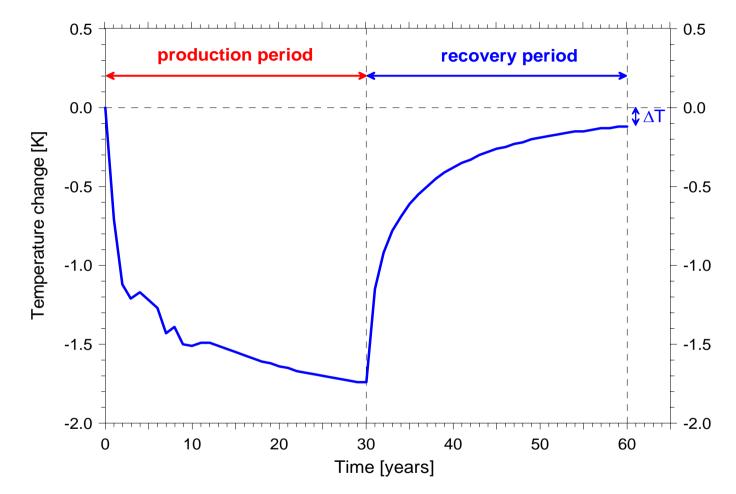

Achievements of Switzerland

Switzerland occupies a prominent rank in geothermal direct use (several "Olympic medals").

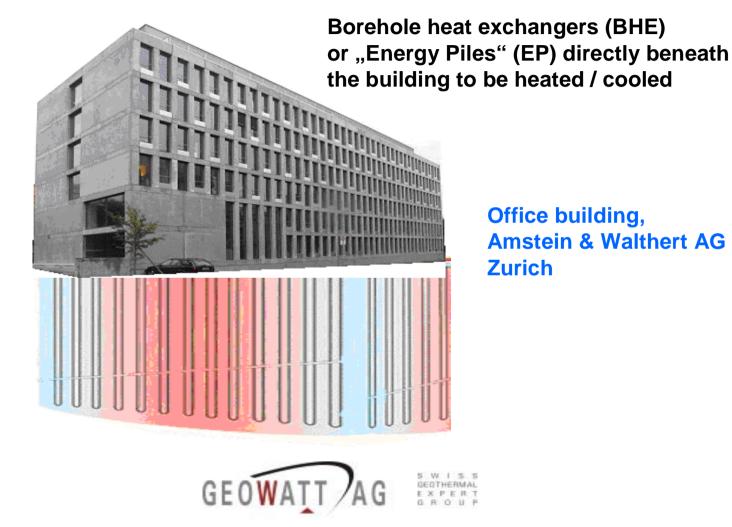

How come ?

Increasing market penetration of geothermal heat pumps


- Proof of reliable system operation (also on the long term) by theoretical and experimental investigations;
- Increasing awareness, confidence, promotion and demand;
- Experience and expanding market leads to price reduction.


Measurement setup at Elgg/ZH, Switzerland

Ground temperature profiles at 1m distance from the BHE at Elgg/CH (Rybach & Eugster 2002)



Temperature evolution in the ground around BHE

Asymptotic temperature decline and recovery at 50 m depth and 1 m distance from the BHE (from Rybach & Eugster 2002)

Optimum property use

CH - 8050 Zürich

BHE field beneath a building

BMW Headquarters Dielsdorf, Switzerland (140 kW Heiz-, 130 kW Kühlleistung)

energieschweiz

http://www.geowatt.ch

S	W	Ι	S	S	
GI	EOT	HE	RM	AL	
Е	ΧF	P E	R	Т	
G	R	0	U	Р	

IEEJ:October 2006

>>> energie-cluster.ch

Production and business building

Production and business building of a medical company in St. Gallen. The entire building is heated by 17 BHE of an average of 280 m ø 40 mm. The BHE are hydraulically adjusted

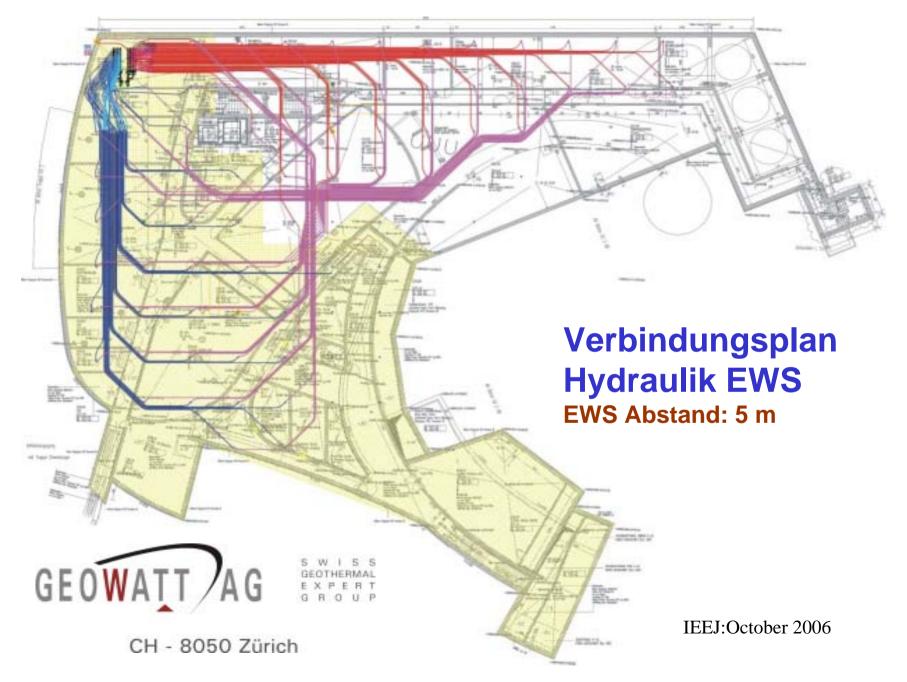
energie schweiz

heating / free-cooling

>>> energie-cluster.ch

- Railway station Aarau (CH) south
- climatisation over ceiling components and concrete core
- 16 BHE à 150 m deep, d=32 mm
- 250 kW heating, 100 kW cooling power

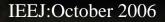
IEEJ:October 2006


http://www.geowatt.ch 17. Mai 2004

energie schweiz

Grand Hotel Dolder, Zurich: Reconstruction and major extension

before: 22'000 m², after: 47'000 m²



CH - 8050 Zürich

Drilling start for BHE Construction site Grand Hotel Dolder Zurich 70 BHES à 150 m

Energy piles: Borehole heat exchangers underneath buildings

Energy piles installation

ENERGY PILES

IEEJ:October 2006

Zoom sur la pompe à chaleur					
Pieux de fondation équipés d'un échangeur de chaleur		ĺ		Û	
		e pier ge et l			oour

IEEJ:October 2006

Schoolhouse in Fully/VS Heating power 56 kW 41 energy piles, average depth 25 m

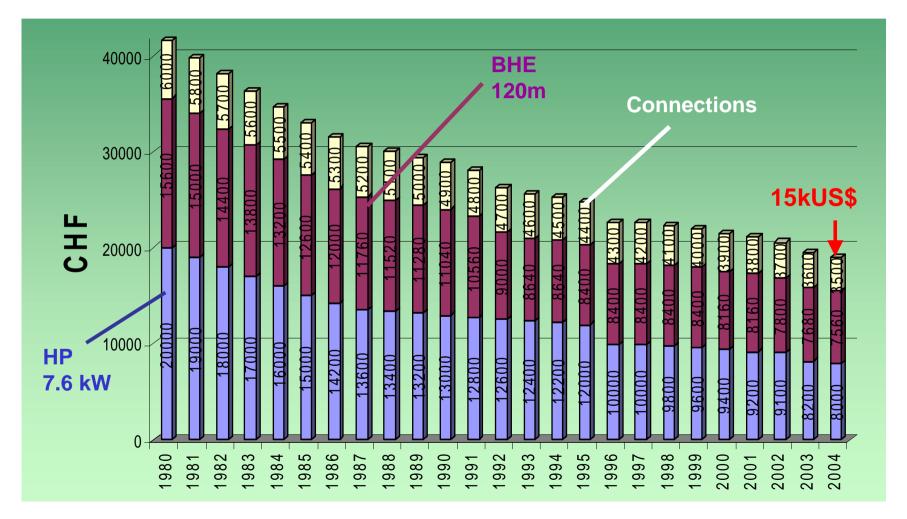
Energy piles

S W I S S GEOTHERMAL E X P E R T G R O U P

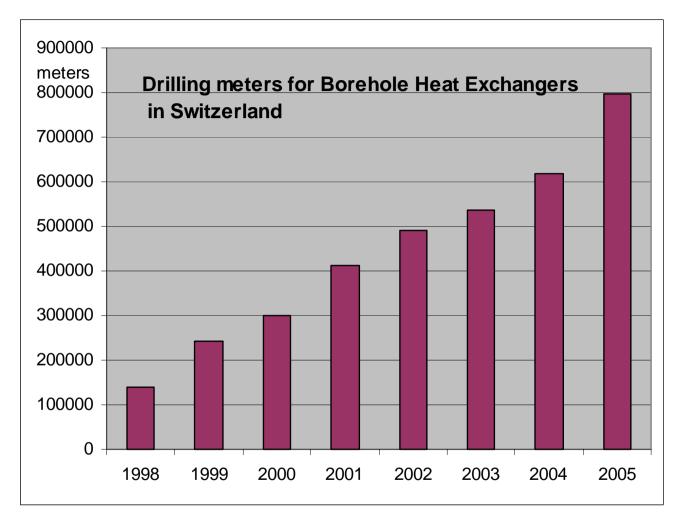
CH - 8050 Zürich

Prominent example: Terminal E, Zurich airport (2001)

200'000 m³ construction space 58'000 m² energy supply area


1100 MWh heating, 600 MWh cooling load

300 energy piles à 30 m



CH - 8050 Zürich

IEEJ:October 2006 BHE/HP system price development in Switzerland 1980-2004 (corrected for inflation)

IEEJ:October 2006

Development of BHE drilling in Switzerland 1998 – 2005

Advise for Japan:

- Geothermal heat pumps are ideal for Japan;
- They should be strongly promoted;
- Drilling costs can greatly be reduced.

Many thanks for your attention !

Prof. Dr. Dr.h.c. L. Rybach GEOWATT AG Zurich Dohlenweg 28 CH-8093 Zurich, Switzerland rybach@geowatt.ch

Contact:report@tky.ieej.or.jp