

THE ROLE OF NUCLEAR ENERGY IN A NET-ZERO FUTURE

Diane Cameron

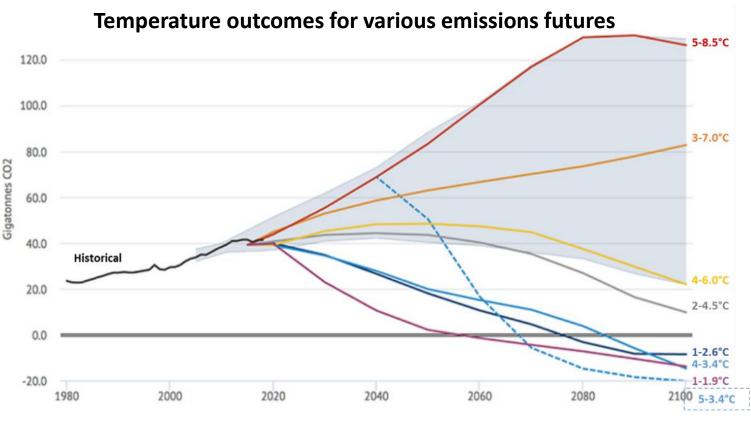
Head of Division Nuclear Technology Development and Economics

> 16th IEEJ Global Energy Webinar November 26, 2021

Outline

- 1. Context Pathways to net zero emissions
- 2. The Role of Nuclear Energy
- 3. Challenges and Recommendations
- 4. Understanding the cost of electricity

Charting a path towards an achievable and affordable electricity mix for a net-zero future...


1. Context – Pathways to net-zero emissions

Global Action Is Urgently Needed

- The magnitude of the challenge should not be underestimated
- The planet has a "carbon budget" of 420 gigatonnes of carbon dioxide emissions for the 1.5°C scenario
- At current levels of emissions, the entire carbon budget would be consumed within 8 years
- Emissions must go to net zero, but the world is not on track

Source: Carbon Brief (2019).

Pathways to Net Zero Emissions

- Pathways based on the world's carbon budget, emissions reductions targets and timelines have been modelled and published by various organisations
- None of the published pathways project aspirational scenarios for nuclear innovation
- All published pathways include levels of nuclear energy deployment based on currently available commercial technologies
- Nuclear innovation does not feature prominently because of a lack of specialised expertise in nuclear technologies among modelling teams

Samples of ambitious and aspirational pathways to net zero

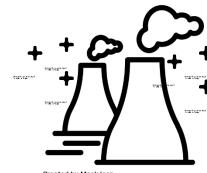
Organisation	Scenario	Parameter	2020	2050	Growth rate (2020-50)
IIASA (2021)	Divergent Net Zero Scenario (1.5°C)	Cost of carbon (USD per tCO ₂)	0	1 647	-
		Wind (in GWe)	600	9 371	1461%
		Solar (in GWe)	620	11 428	1743%
IEA (2021c)	Net Zero Scenario	Hydrogen (MtH ₂)	90	530	490%
	(1.5°C)	CCUS (GtCO ₂)	<0.1	7.6	-
		Energy intensity (MJ per USD)	4.6	1.7	-63%
Bloomberg	New Energy Outlook Green Scenario (1.5°C)	Wind (in GWe)	603	25 000	4045%
NEF (2021)		Solar (in GWe)	623	20 000	3110%

Nuclear in Emissions Reduction Pathways

	Scenario	Climate target	Nuclear innovation		Role of nuclear energy by 2050	
Organisation				Description	Capacity (GW)	Nuclear growth (2020-50)
IAEA (2021b)	High Scenario	2°C	Not included	Conservative projections based on current plans and industry announcements.	792	98%
IEA (2021c)	Net Zero Scenario (NZE)	1.5°C	Not included but HTGR and nuclear heat potential are acknowledged.	Conservative nuclear capacity estimates. NZE projects 100 gigawatts more nuclear energy than the IEA sustainable development scenario.	812	103%
Shell (2021)	Sky 1.5 Scenario	1.5°C	Not specified	Ambitious estimates based on massive investments to boost economic recovery and build resilient energy systems.	1 043	160%
IIASA (2021)	Divergent Net Zero Scenario	1.5°C	Not specified	Ambitious projections required to compensate for delayed actions and divergent climate policies.	1 232	208%
Bloomberg NEF (2021)	New Energy Outlook Red Scenario	1.5°C	Explicit focus on SMRs and nuclear hydrogen	Highly ambitious nuclear pathway with large scale deployment of nuclear innovation.	7 080	1670%

All pathways require global installed nuclear capacity to grow significantly, often more than doubling by 2050.

2. The Role of Nuclear Energy



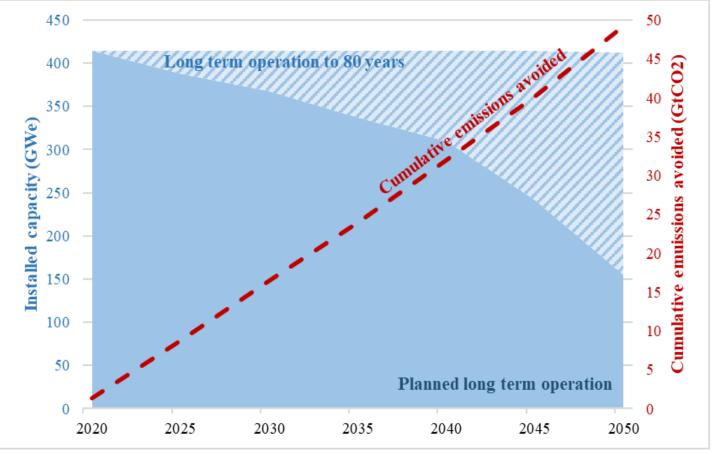
The Full Potential of Nuclear Energy to Contribute to Emissions Reductions

Created by Mask Icon from Noun Project

Created by Mask Icon from Noun Project

Created by Olena Panasovska from Noun Project

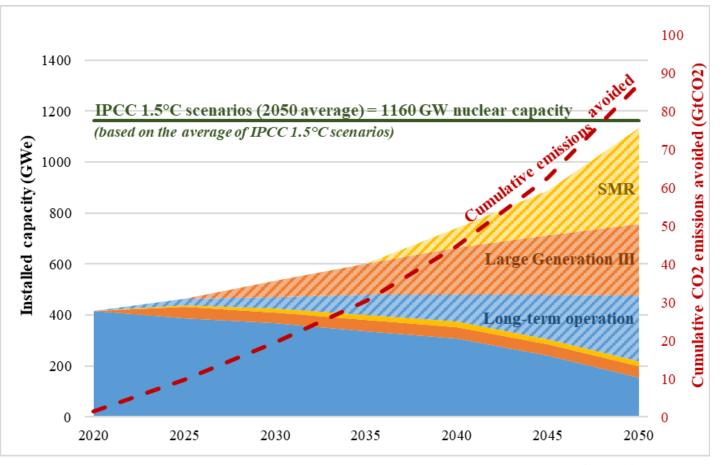
Long TermGen-IIISmall ModularNon-ElectricalOperationReactorsReactorsapplications



Long-term Operation

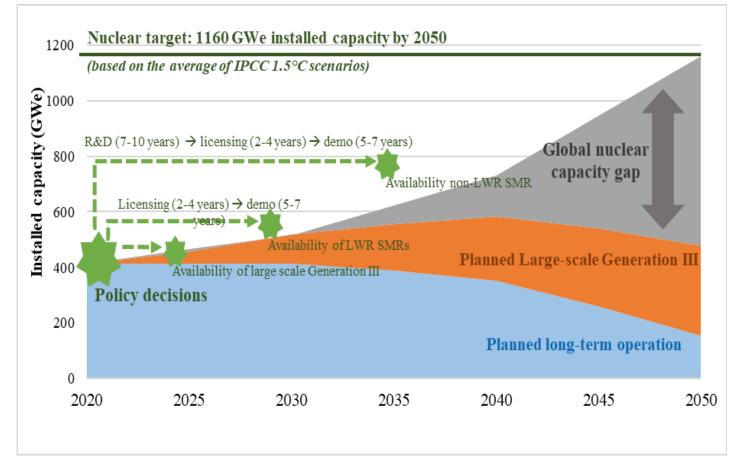
- Presently, the average age of nuclear power plants in OECD countries is 36 years
- The technical potential exists in most cases for long-term operation for several more decades
- Long-term operation is one of the most cost-competitive sources of low-carbon electricity
- Beyond technical feasibility, adequate policy and market are key conditions of success of long-term operation
- Long-term operation could save up to 49 gigatonnes of cumulative emissions between 2020 and 2050

Installed Capacity And Cumulative Emissions Avoided


Source: NEA (forthcoming).

Full Potential of Nuclear Contributions to Net Zero

- The contributions from long-term operation, new builds of large-scale Generation III nuclear technologies, small modular reactors, nuclear hybrid energy and hydrogen systems project the full potential of nuclear energy to contribute to net-zero
- Reaching the target of 1160 gigawatts of nuclear by 2050 would avoid 87 gigatonnes of cumulative emissions between 2020 and 2050, positioning nuclear energy's contribution to preserve 20% of the world's carbon budget most likely de to be consistent with a 1.5°C scenario


Source: NEA (forthcoming).

Global Installed Nuclear Capacity Gap

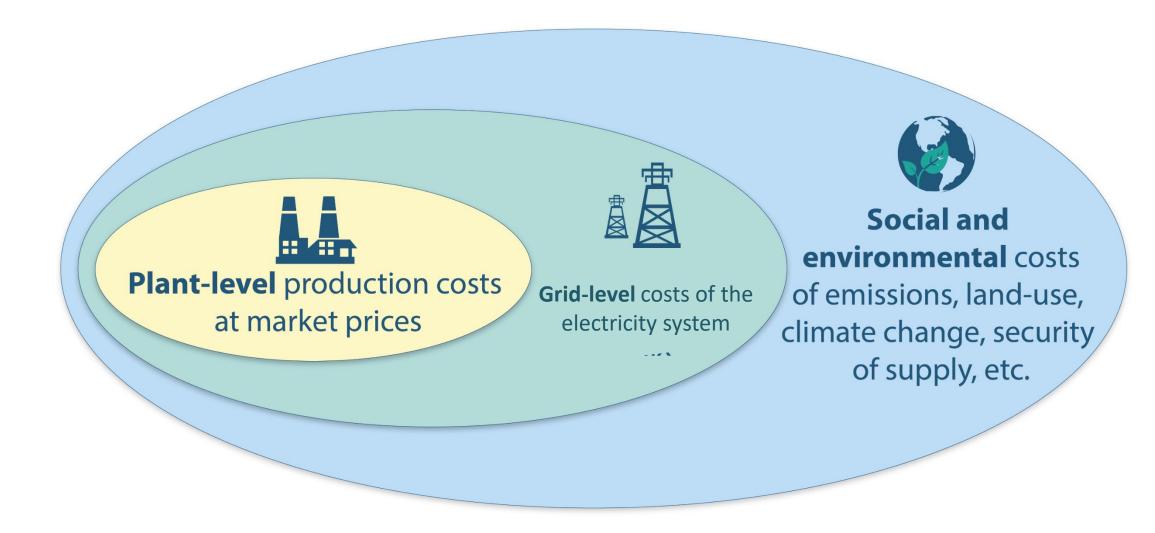
- Under current policy trends, nuclear capacity in 2050 is expected to reach 479 gigawatts – well below the target of 1160 gigawatts of electricity
- There is a projected gap between the minimum required global installed nuclear capacity and planned global nuclear capacity of nearly 300 gigawatts by 2050
- Owing to the timelines for nuclear projects, there is an urgency to action now to close the gap in 2030-2050

Source: NEA (forthcoming).

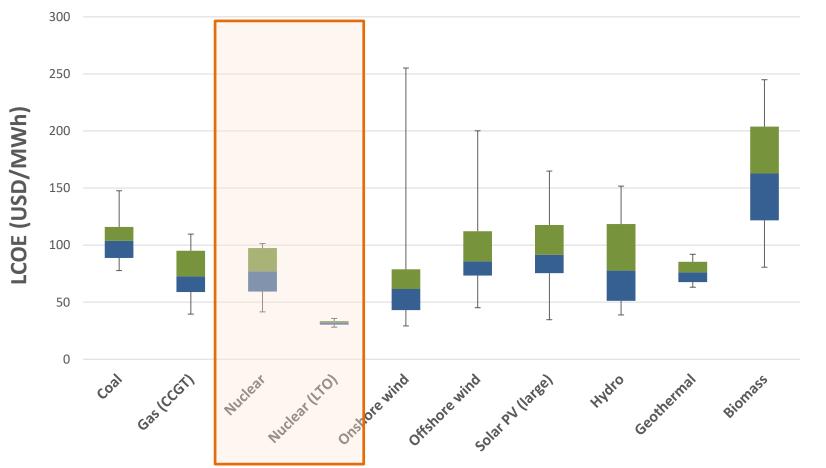
3. Challenges and Recommendations

Nuclear Energy Faces Many Challenges

- The nuclear sector must move quickly to demonstrate and deploy near-term and medium-term innovations including advanced and small modular reactors, as well as nuclear hybrid energy systems including hydrogen
- There are key enabling conditions for success that the nuclear sector and energy policy-makers more broadly should address in the areas of system costs, project timelines, public confidence and clean energy financing
- A systems approach is required to understand the full costs of electricity provision, and to ensure that markets value desired outcomes: low carbon baseload, dispatchability, and reliability
- Rapid build-out of new nuclear power is possible, but requires a clear vision and plan
- Building trust is central to building public confidence and requires sustained investments in open and transparent engagement as well as science communication. A common mistake is to assume that public confidence is primarily a communication issue
- **Governments have a role to play in all capital intensive infrastructure projects** including nuclear energy projects. This role can include direct funding, but also enabling policy frameworks that allow an efficient allocation of risks and for nuclear energy projects to compete on their merits on equal footing with other emitting energy projects

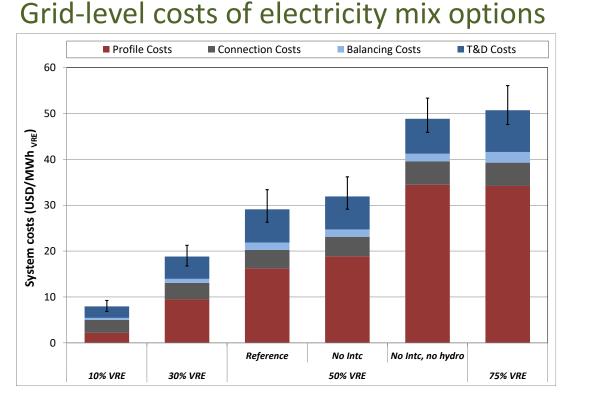

4. Understanding the Costs of Electricity

Understanding the System Costs of Electricity

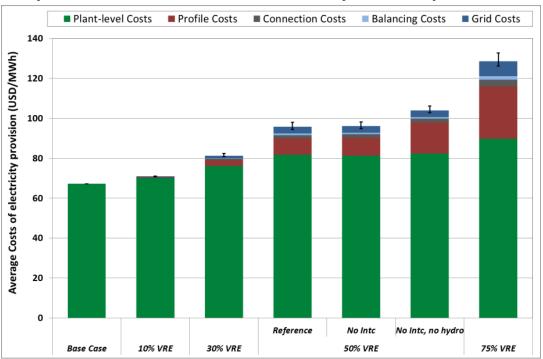


Comparing Electricity Generation Options

Plant-level costs of electricity generation options

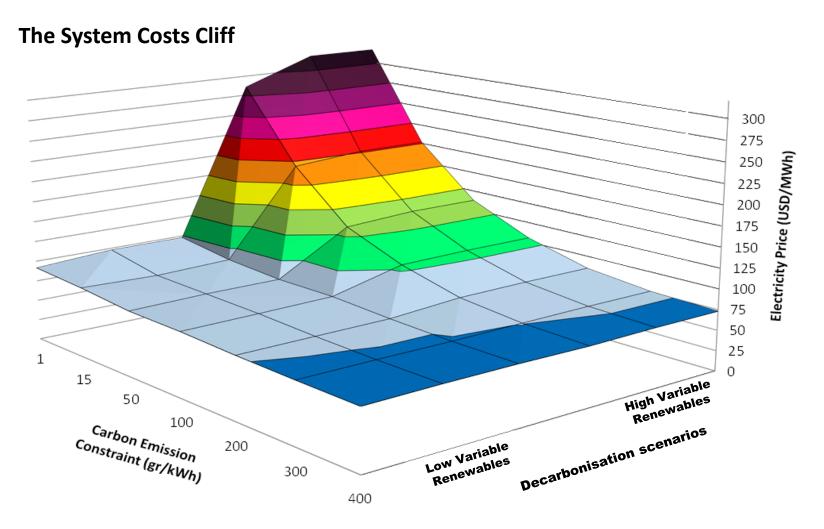

Long term operation of nuclear power is <u>the lowest cost option</u> for nonemitting electricity generation.

Source: IEA/NEA (2020) with cost of capital of 7% and CO2 price @ 30 USD/tCO2



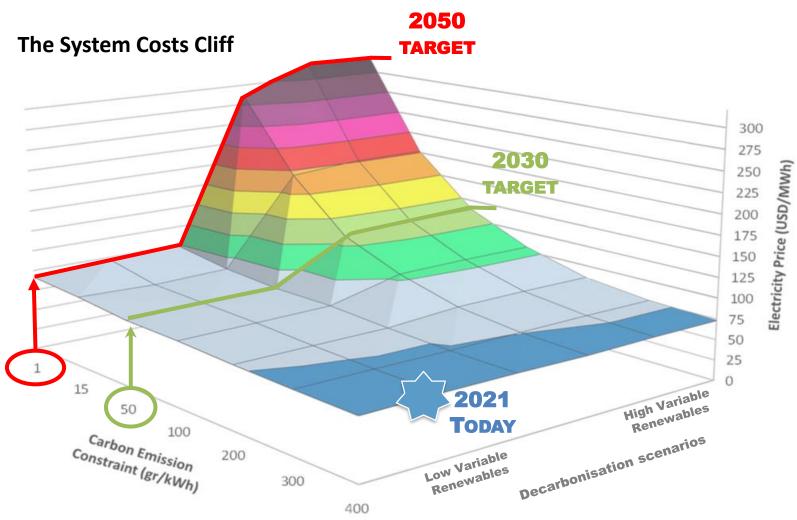
Comparing Electricity Mix Options

System costs of electricity mix options



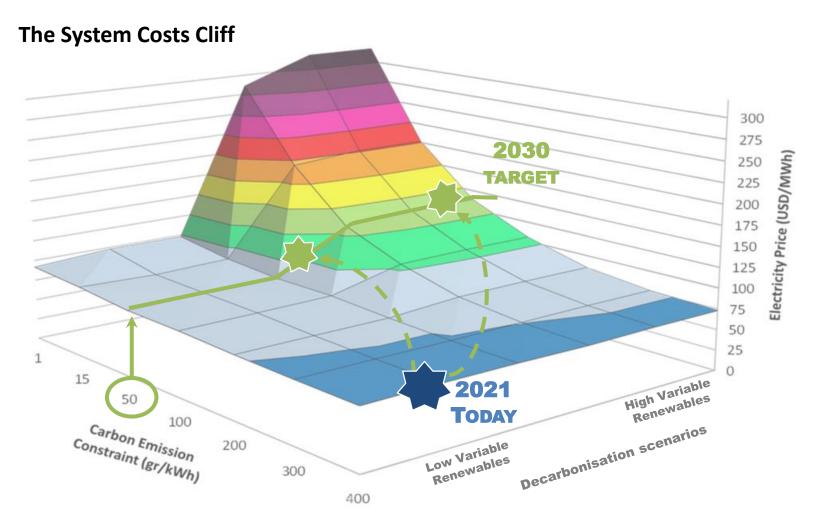
As the share of variable renewables grows, electricity system costs increases significantly

Charting a Path to Net-Zero Electricity



The system costs of electricity depend on the composition of the electricity mix (ie. Low vs. high shares of variable renewables) and carbon emission constraints.

Charting a Path to Net-Zero Electricity

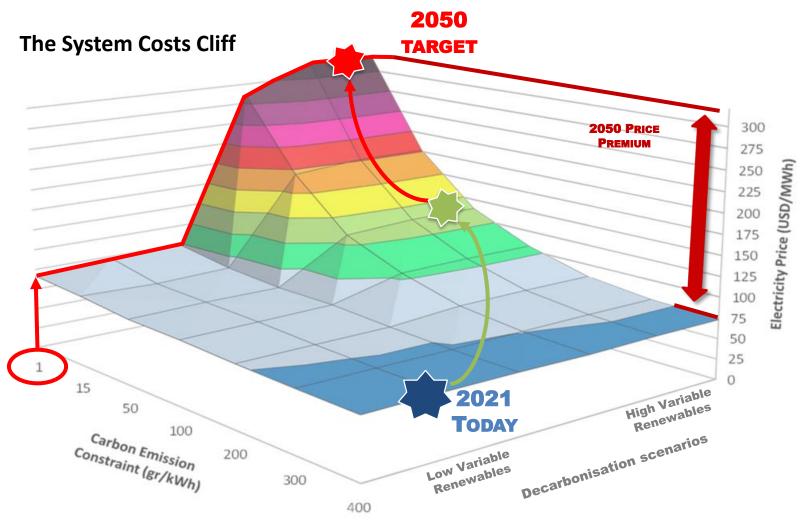


- The blue star indicates where we are today
- The green line corresponds to 2030 targets
- The red line corresponds to net-zero 2050 targets

Charting a Path to Net-Zero Electricity

- Many different pathways are possible to reach 2030 targets
- System costs increase on pathways to 2030 targets with higher shares of variable renewables

Charting a Path to Net-Zero Electricity

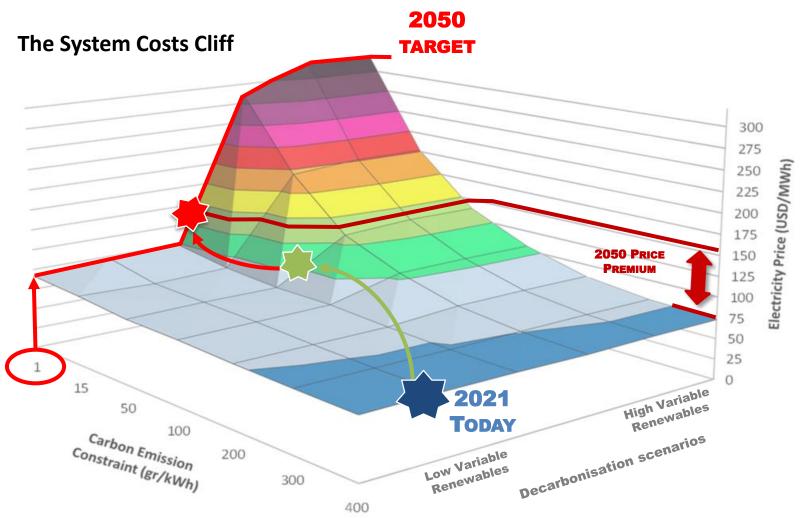


• We may be able to reduce emissions to meet 2030 targets by growing the share of variable renewables to very high levels in the mix

Charting a Path to Net-Zero Electricity

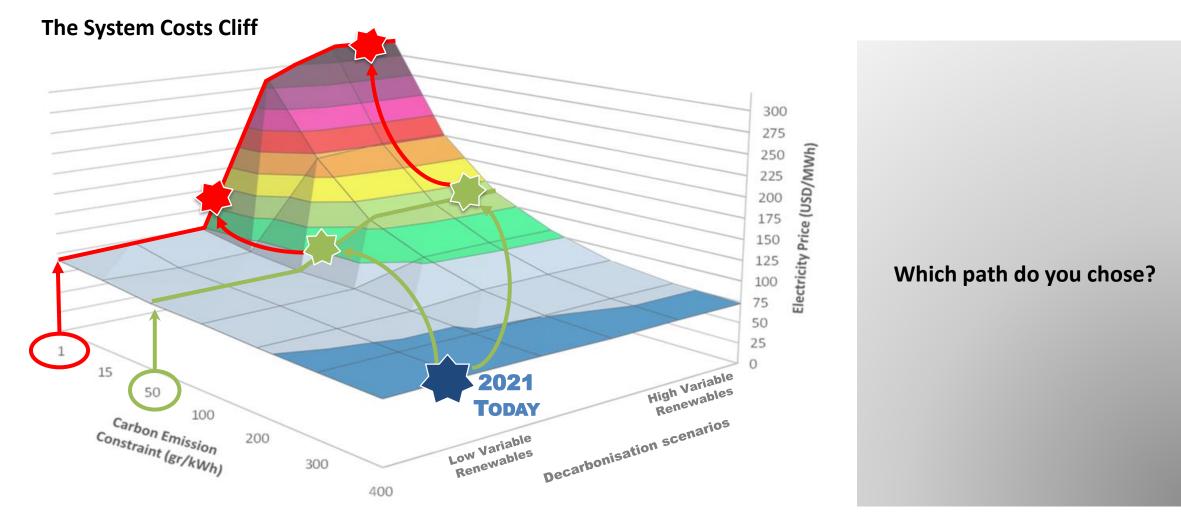
 But the costs of reaching 2050 targets of net-zero with very high shares of variable renewables are likely prohibitive

Charting a Path to Net-Zero Electricity

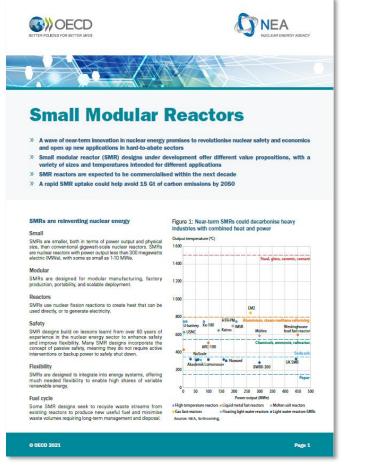


 By thinking one step ahead and planning TODAY for NET ZERO

Charting a Path to Net-Zero Electricity



• We can chart an affordable path to net-zero electricity generation, with a balanced mix of variable renewables and nuclear energy


Charting a Path to Net-Zero Electricity

New NEA brochures on nuclear innovation, climate change and economics

Climate Change Targets: The role of nuclear energy

- $\,$ > The climate crisis is one of the defining challenges for this generation and the window for action is rapidly narrowing
- » Nuclear energy is playing an important role and can do more to help meet climate change targets
- » Continued operation of the existing fleet, as well as new builds of large-scale and small modular reactors could avoid 87 gigatonnes of cumulative emissions between 2020 and 2050
- » By 2050, nuclear energy could displace 5 gigatonnes of emissions per year, which is more than what the entire US economy emits annually today
- Energy policymakers have an important role to play to create the enabling conditions for success

The world is not on track to meet the decarbonisation objectives of the Paris Agreement

As binblinhted by the IPCC synthesis report (IPCC, 2018), the world is not on track. Rather than the steep reductions scientists had hoped for, global emissions are expected to rise by 16% by 2030. The window for action is rapidly narrowing. Even if carbon emissions were to remain constant, the entire carbon budget would be consumed within eight years.

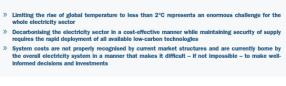
Constrained by the world's carbon budget, carbon emiss must peak within the next few years and drop to zero by 2100 (or sooner). This will require policy changes around the world as well as massive investments in innovation, infrastructure, and the deployment of non-emitting energy resources. More specifically, electricity grids must be decarbonised; vehicle fleets must be electrified or transitioned to non-emitting fuels; and a range of industrial sectors (e.g. off-grid mining, buildings, chemicals, iron and steel, cement) must be transformed as well.

Current emissions are on a trajectory to far exceed the targets arising from the 1.5° scenario. It is clear that a major shift in direction will be required if countries are to meet their objectives.

The IPCC 1.5°C scenario foresees, on average, 1 160 GW of operational nuclear energy by 2050, a three-fold increase compared to 2020

The 444 nuclear power reactors in operation worldwide today provide 394 gigawatts of electrical capacity that supplies approximately 10% of the world's electricity. Nuclear energy

@ OECD 202


OECD countries and the second largest source worldwide (after hydropower). There are approximately 50 more nuclear reactors under construction to provide an additional 55 pigawatts of spacity and more than 100 additional reactors are planned. Existing nuclear capacity displaces 1.6 gigatonnes of carbon dioxide emissions annually and has displaced 66 gigatonnes of carbon dioxide since 1971 - the equivalent of two years of global emissions (NEA, 2020). The nuclear sector can support future climate change mitigation efforts in a variety of ways. Existing global installed nuclear capacity is already playing a role and long-term operation of the existing fleet can continue making a contribution for decades to come. There is also significant potential for large scale nuclear

is the largest source of non-emitting electricity generation in

new builds to provide non-emitting electricity in existing and embarking nuclear power jurisdictions, and, in particular, replace coal. In addition, a wave of near-term and medium-term nuclea nnovations have the potential to open up new opportunities with advanced and small modular reactors (SMRs), as well as nuclear hybrid energy systems, reaching into new markets and applications. These innovations include sector coupling, combined heat and power (cogeneration) for heavy industry and resource extraction, hydrogen and synthetic fuel production, desalination, and off-grid applications.

In a special report published in 2018 (IPCC, 2018), the IPCC - i.e. pathways with emissions reductions sufficient to limit average global warming to less than 1.5°C. The IPCC found that, on average, the pathways for the 1.5°C scenario require nuclear energy to reach 1 160 gigawatts of electricity by 2050, up from 394 gigawatts in 2020.

Page 1

Understanding the costs of electricity provision requires systems level thinking

OECD

whole electricity sector

The first level of analysis is plant-level costs of generation, which include, among other costs, the costs of the concrete and steel used to build the plant, as well as the fuel and human resources to operate it. These plant-level costs are typically referred to as the levelised cost of electricity (LCOE), and they may include some costs that were previously considered as externalities - for example, if there is a price on carbon or a legislated requirement to internalise the end of life cycle costs into plant-level costs.

System Costs of Electricity

The next level of analysis takes into account grid-level syst costs. These are the costs that generating units impose on the broader electricity system - including the costs of maintaining a high level of security of supply at all times as well as delivering electricity from generating plants to customers - in other words in addition to production, they include connection, distribution and transmission costs. Most importantly, grid-level costs include the costs associated with compensating for the variability and uncertainty in the supply from generating plants. This includes the costs of additional dispatchable capacity to account for the variability of certain renewables such as wind and solar PV and for maintaining spinning reserves that can be ramped up when the production of variable sources falls short of forecasts.

The final level of analysis addresses the full costs, including the social and environmental costs that different technologies impose on the well-being of people and communities, including negative externalities like atmospheric pollution, impacts or land-use and biodiversity, as well as, in certain cases, positive externalities such as impacts on employment and economic development, or spin-off benefits from technology innovation. These are the externalities that are not accounted for in plant-level costs or grid-level system costs.

@ 0ECD 2021

The combination of plant-level costs, grid-level systems costs, and full social and environmental costs creates a framework that allows policymakers to compare the costs of different generating options - comparing apples to apples, not apples to oranges. To do so requires a systems level perspective

NEA

Figure 1: Understanding the system costs of electricity

Source: Adapted from NEA (2012)

Total economic system costs, then, are defined as plant level generating costs plus grid-level system costs. Taking this systems level perspective includes:

 Profile and balancing costs – the grid-level costs imposed by variability and uncertainty

· Connection, distribution, and transmission costs the costs of delivering electricity from distributed power eneration to customer

Page 1

https://www.oecd-nea.org/jcms/pl 61714/nea-at-cop26

Thank you!

Contact:report@tky.ieej.or.jp