

Combining a high share of variable energy with demand-side flexibility:

The WindNODE project

Dr. Boris Rigault GJETC Outreach Event Tokyo, September 24, 2019

Unrestricted © Siemens AG 2019 Page 1 September 2019

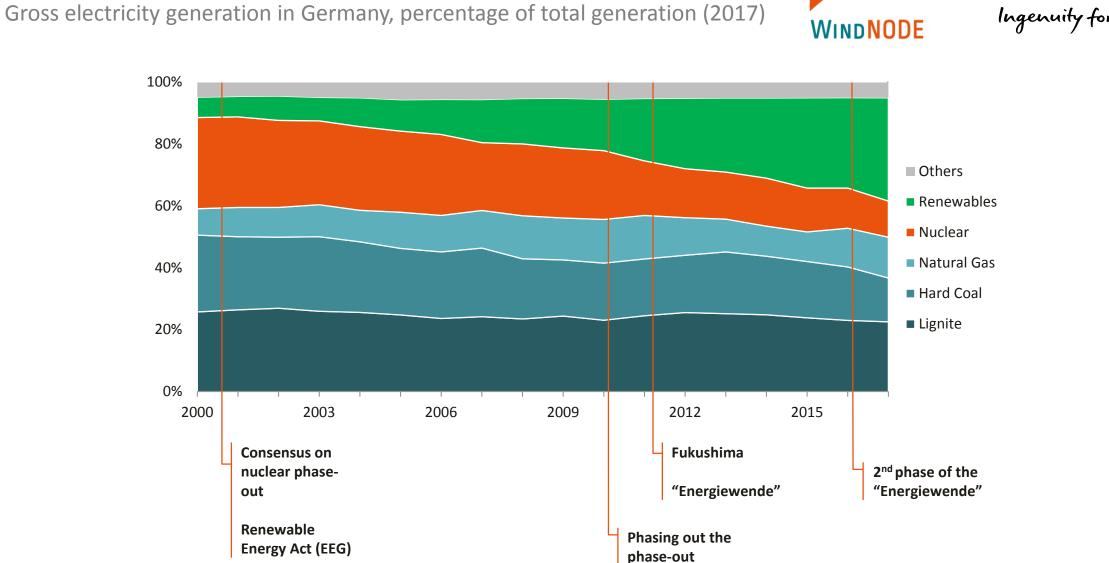
Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag Content

The German Energy Transition & the WindNODE Project

Enabling Demand Side Flexibility in Production

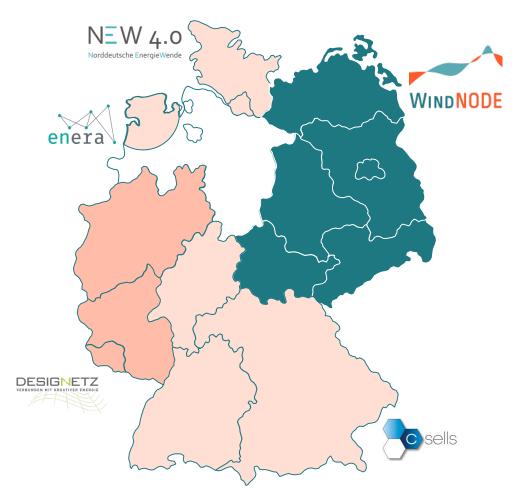

Outlook

Unrestricted © Siemens AG 2019 Page 2 September 2019

Dr. Boris Rigault (Siemens AG)

Unrestricted © Siemens AG 2019 Page 3 September 2019 Source: AG Energiebilanzen, 2018

Over 1/3 of German electricity mix comes from renewables



Dr. Boris Rigault (Siemens AG)

SINTEG program: Field tests for 2nd phase of energy transition

Overview of 5 smart energy showcases

Challenge & Targets

Scalable solutions for efficient, ecofriendly and safe integration of large amounts of renewables: (1) Coping with intermittency (2) Decarbonizing other sectors

(3) Defining "digitalization"

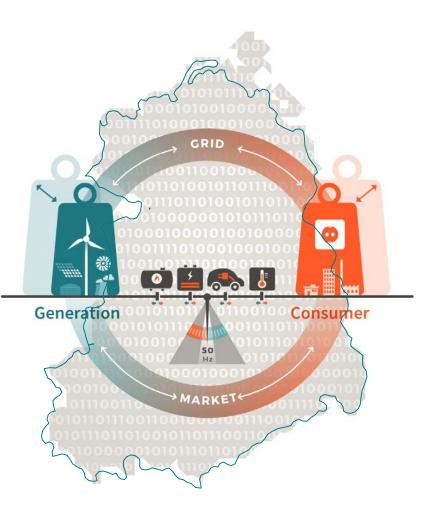
(4) Renewing energy transition narrative

Government Funding*, 2017-2020 230 mio. € for five consortia, 37 mio. € for WindNODE

WindNODE – entire East Germany

- 6 federal states, 16 mio. people
- 1 control area (50Hertz)
- Renewables frontrunner (> 56%)
- Energy transition challenges

* Funded by the German Federal Ministry for Economic Affairs and Energy (BMWi)
 Source: BMWi, c/sells, designetz, enera, NEW 4.0, WindNODE


Utilizing flexibility to cope with intermittence

WindNODE approach

- Identifying flexibility options (technical potential)
- Developing use cases for flexibility (economic potential)
- Creating value from energy data (digitalisation in the energy space)
- ✓ Field test

(blueprints, narrative, dissemination)

Page 5 September 2019

Content

The German Energy Transition & the WindNODE

Enabling Demand Side Flexibility in Production

Outlook

Unrestricted © Siemens AG 2019

Page 6 September 2019

Demand Side Flexibility in Production Partners in Workpackage 7.2

Four Siemens facilities participate in demand side management effort

Siemens Dynamowerk Berlin 110 years of Innovation from Berlin

Siemens Measurement Equipment Plant Berlin Intelligent Instrumentation for the Energy Transition

Unrestricted © Siemens AG 2019

Siemens Targets

1) Learn what industrial load management can contribute to integrate renewables and reduce electricity costs

2) Understand how to consider thermal, mechanic and electrochemical productionand peripheral processes in different manufacturing sites.

3) Develop new functions for Siemens control products

Siemens Gas Turbine Plant Berlin Power from Berlin.

Siemens Switchgear Plant Berlin Competence Center for switchgear technology

Dr. Boris Rigault (Siemens AG)

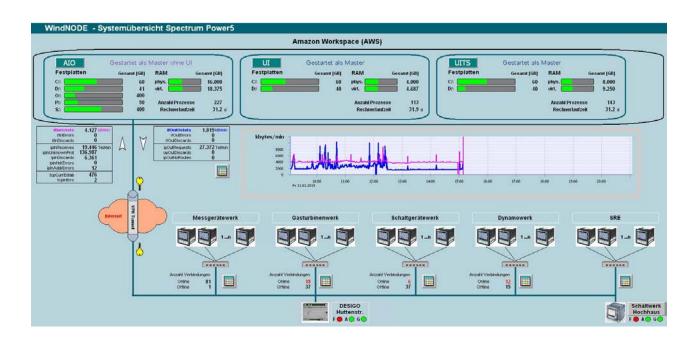
Demand Side Flexibility in Production Approach

1

2

3

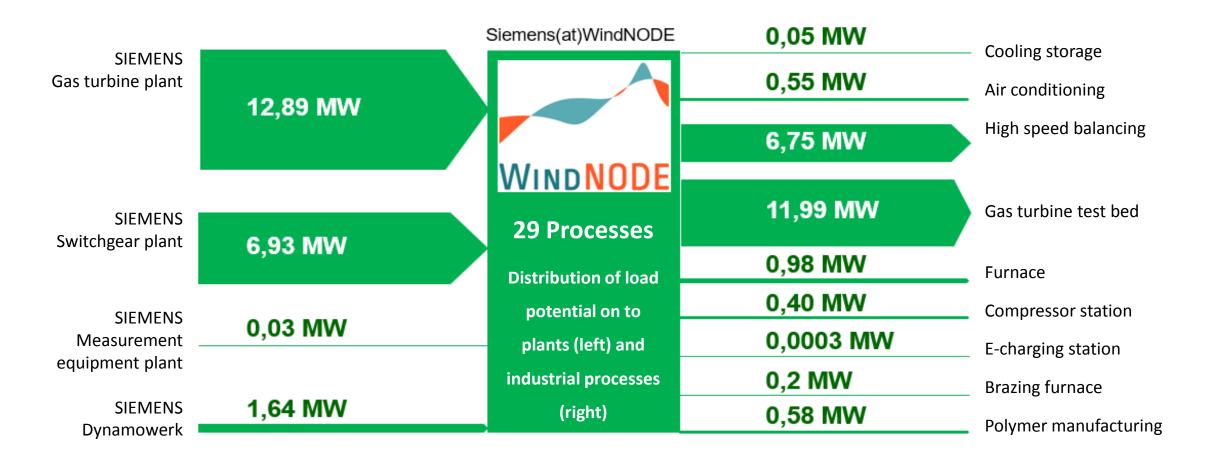
Installation of SICAM metering devices and energy data management system Spectrum Power 5


Analysis of processes with production experts

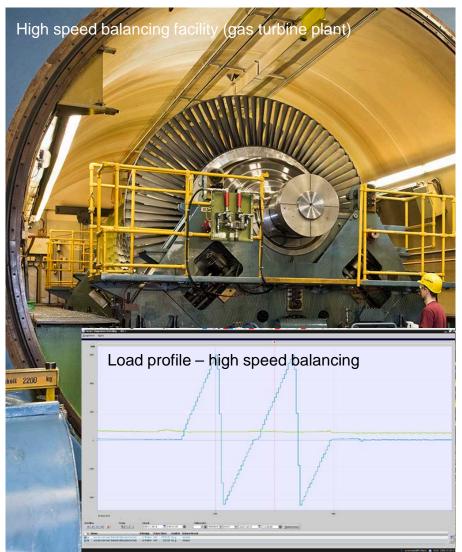
Apply load shifting concepts

- a) "fixed shifting"
- b) "not projectable, but flexible"
- c) "projectable & manually operated "
- d) "projectable & fully automated"

4


Load prognosis optimization for production planning

WindNODE system overview in Spectrum Power 5 (Certified Energy Management System acc. to DIN ISO 50001)

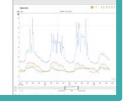

Demand Side Flexibility in Production Identifying Flexible Processes

Page 9 September 2019

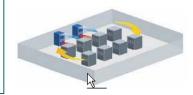
Demand Side Flexibility in Production Understanding flexibility and means of control

WINDNODE SIEMENS Ungenuity for Life

Type of flexibility: Example: Preferred control for balancing facility

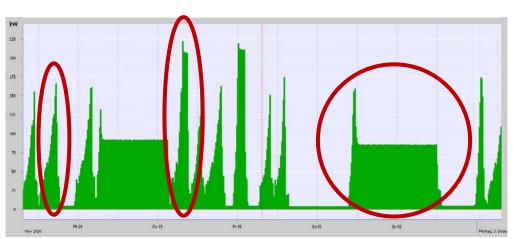

Include availability of renewable energy into production planning

 \rightarrow <u>Time frame ~ 3 days</u>


Show current energy availability at production machine in order to provide flexibility to operator → Time frame ~ 3 hours

Closed loop control of production equipment based on current renewable energy availability \rightarrow <u>Time frame ~ < 1 min.</u>

Utilization of "Spectrum Power 5" (Certified Energy Management System) for the analysis of the internal energy demand according to DIN ISO 50001


Unrestricted © Siemens AG 2019

Demand Side Flexibility in Production Optimization process

WINDNODE SIEMENS WINDNODE

One optimization per grid connection

- Input: Price time series, flexibility time slots, opportunity costs
- <u>Minimize target function</u>: Total costs (power supply, network access, opportunity costs)
- <u>Degrees of freedom</u>: Load profile of flexible processes ("typical") can be shifted within the time slot. Max. power restrictions not to be exceeded.
- <u>Results</u>: Starting times of flexible processes and load forecast

Brazing furnace with 3 typical production related load profiles

Optimized furnace process with electricity price curve in the background

Demand Side Flexibility in Production

Commercialization of flexible loads by activation time

Very short-term (activation time: 5 s – 60 min) → Reserve Power	Not suitable	High	High	
Short-term (activation time: 45 min – 24 h) → Intraday Power Trading	Production	Technical	Compensation	
Medium-term (activation time: 12 h – 36 h) → Day-ahead Power Trading	planning	requirements	/ Saving	
Static → Peak load shaving, load profile optimization for long-term power purchase	Very suitable	Low	High	

Flexible loads have been traded over WindNODE flexibility platform already

Unrestricted © Siemens AG 2019

Source: Uni Leipzig, IKEM, TU Berlin, Siemens (2019) – WindNODE Working Paper

Page 12 September 2019

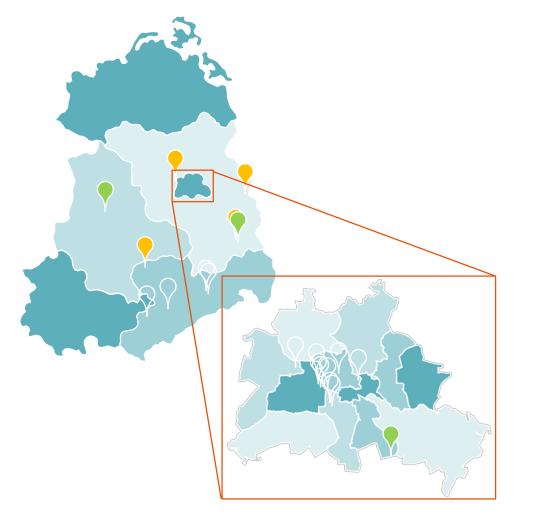
Dr. Boris Rigault (Siemens AG)

Content

The German Energy Transition & the WindNODE

Enabling Demand Side Flexibility in Production

Outlook


Unrestricted © Siemens AG 2019

Page 13 September 2019

More than 20 "visitor sites" are planned

Overview of selected "visitor sites", more are coming

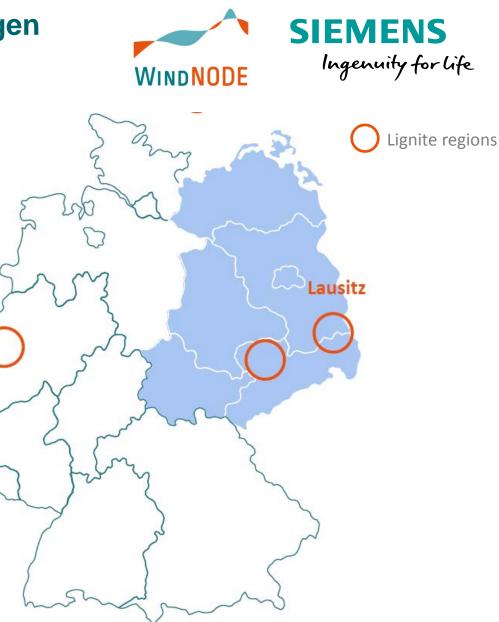
Source: www.windnode.de/en/concept/showcase

Experience Demand Side Management @ Siemens Showroom (Berlin, Nonnendammallee)

Unrestricted © Siemens AG 2019

Page 14 September 2019

Unrestricted © Siemens AG 2019


Page 15

Combining Expertise in Renewables and Hydrogen Outlook for a region with "energy & transition" expertise

Examples for potential future projects in East Germany

Power-to-Gas. Government have recently launched their call for "Reallabor" applications ("reality labs" = showcases at a high Technology Readyness Level) with a focus on Power-to-Gas**. Up to EUR 100 mio. funding per year. Reference Plant Lausitz selected for realization.

Phasing out coal. Most likely, lignite will be phased out by 2038. Strong political attention for a major transformation effort. Currently, there is intensive discussion on perspectives for former coal regions. Hydrogen & sector coupling as promising approaches.

** Call by BMWi (Federal Ministry for Economic Affairs and Energy) is available online (only in German):

September 2019 www.energieforschung.de/antragsteller/foerderangebote /ideenwettbewerb_reallabore-der-energiewende

Source: www.windnode.de/en/partners

Unrestricted © Siemens AG 2019 Page 16 September 2019

Contact

Dr. Boris Rigault Siemens AG Gas and Power

Lutherstr. 51 02826 Goerlitz, Germany

Phone: +49 162 4423282 boris.rigault@siemens.com

siemens.com

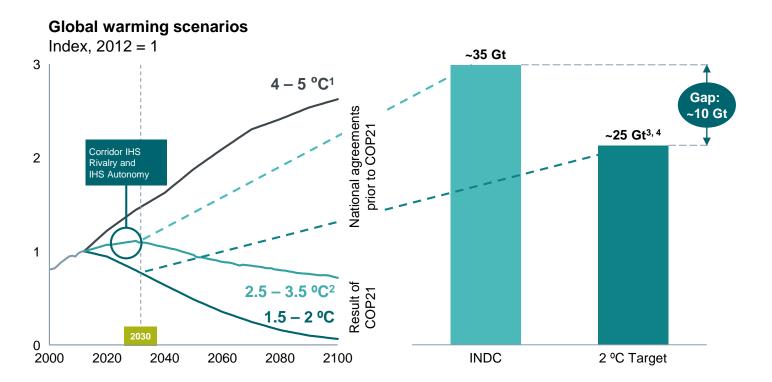
Disclaimer

This document contains statements related to our future business and financial performance and future events or developments involving Siemens that may constitute forward-looking statements. These statements may be identified by words such as "expect," "look forward to," "anticipate," "intend," "plan," "believe," "seek," "estimate," "will," "project" or words of similar meaning. We may also make forward-looking statements in other reports, in presentations, in material delivered to shareholders and in press releases. In addition, our representatives may from time to time make oral forward-looking statements. Such statements are based on the current expectations and certain assumptions of Siemens' management, of which many are beyond Siemens' control. These are subject to a number of risks, uncertainties and factors, including, but not limited to those described in disclosures, in particular in the chapter Risks in Siemens' Annual Report. Should one or more of these risks or uncertainties materialize, or should underlying expectations not occur or assumptions prove incorrect, actual results, performance or achievements of Siemens may (negatively or positively) vary materially from those described explicitly or implicitly in the relevant forward-looking statement. Siemens any obligation, to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.

TRENT® and RB211® are registered trade marks of and used under license from Rolls-Royce plc. Trent, RB211, 501 and Avon are trade marks of and used under license of Rolls-Royce plc.

Page 19 September 2019


Reduction of CO₂ emissions is critical to limit global warming to below current commitments (considered unsustainable WIND NODE

Increasingly ambitious targets from COP21 leave the world ...

... with a significant CO₂ gap³, already in 2030 ...

... which needs to be closed to achieve 1.5 – 2 °C target

Transition of power generation mix

- Coal to natural gas (short term)
- Aggressive renewable growth
- Natural gas to sustainable hydrogen (long term)

Efficient energy management

- Electricity storage for intermittent renewables
- Smart grid technology for demand response

Improved energy efficiency

- Efficient use of energy
- Green electrification of transportation and heat (sector coupling)

1 Business as usual (BAU), without any emission reduction effort | 2 Intended Nationally Determined Contributions (pre-COP21 commitments) |
3 BAU & INDC data based on CO₂ equiv., whereas scenarios only provide CO₂ emissions which are ~33% lower than total CO₂ equiv |
4 Following Climate Action Tracker (~38 Gt CO₂ equiv. in 2030) | Source: CD ST SU, PV/Energy Mix Project Team, IEA

Unrestricted © Siemens AG 2019

Page 20 September 2019

"Energiewende" was essentially an "electricity transition"

Energy concept 2050, decided in 2010 – Government's assessment report 2018* WINDNODE

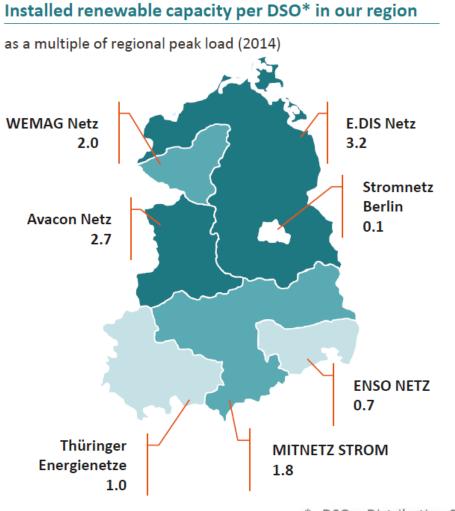
	Base year	Status 2016	Assess- ment**	Target 2020	Target 2050
Greenhouse gas emissions	1990	- 27.3%	R	- 40%	≤ - 80%
Nuclear power phase-out				by 2022	
Renewables share of gross final energy consumpt.		14.8%		18%	60%
share of gross electricity consumption		31.6%		35%	≥ 80%
Energy efficiency primary energy demand	2008	- 6.5%	R	- 20%	- 50%
heat demand of building stock	2008	- 6.3%	\bigcirc	- 20%	
final energy consumption in transportation	2005	4.2%	R	- 10%	- 40%
Security of supply transmission grid expansion			R		
redispatch			\bigcirc		
system average interruption duration index (SAIDI)					
Prices			\bigcirc		
Acceptance			\bigcirc		

* Selected indicators in 7 major assessment dimensions

** Assessment by independent expert commission – qualitative assessment if no performance indicator is shown

Source: 6th Monitoring Report for the Energy Transition (Sechster Monitoring-Bericht zur Energiewende), 2018;

Unrestricted © Siemens AG 2019


Assessment Report of the Independent Expert Commission "Monitoring-Prozess Energie der Zukunft", 2018

Page 21 September 2019

Dr. Boris Rigault (Siemens AG)

WindNODE – showcase from the German capital region

Our region's USPs (2017)

Entire East of Germany

- 6 federal states
- ca. 16 mio. people
- 1 control area (50Hertz)
- > 70 partner

Renewables frontrunner

> 53% of the region's electricity is green

Energy transition challenges

- Grid congestion: Redispatch on 171 days,
 ~ 2% curtailment of renewables
- Large grid expansion projects
- Structural transformation in Lausitz region

* DSO = Distribution System Operator
 Source: 50Hertz, GridLab, BMWi, Projektträger Jülich, WindNODE

Abundance of technical flexibility options

Approach and intermediate results of selected partners

- Identifying flexibility options (technical potential)
- Developing use cases for flexibility (economic potential)
- Creating value from energy data (digitalisation in the energy space)
- Field test
 (blueprints, narrative, dissemination)

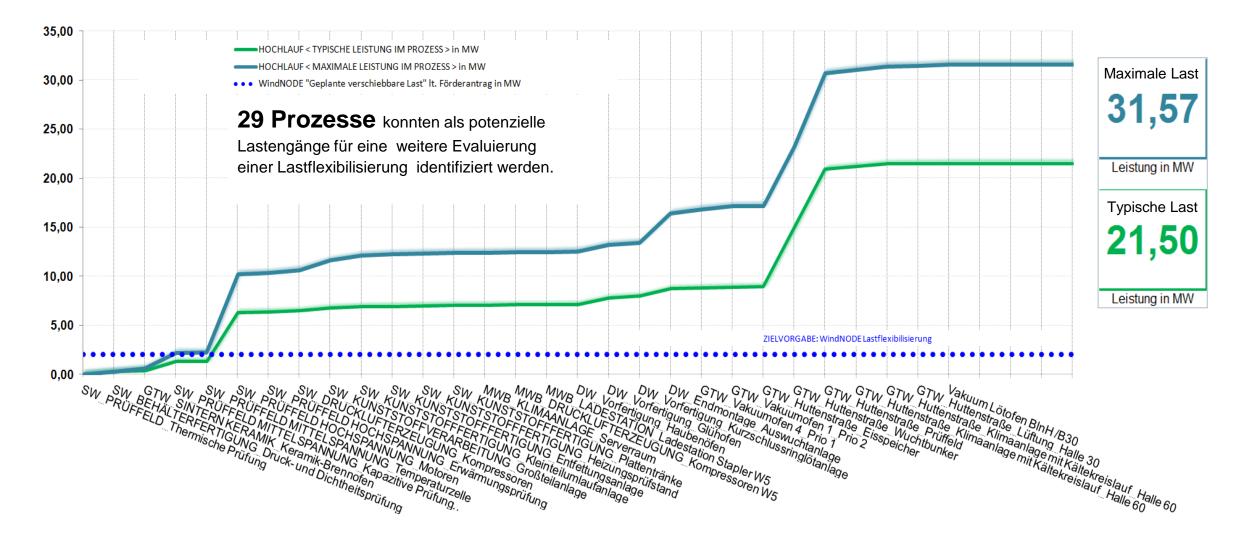
- Model supermarkets at Lidl & KauflandPtH/PtC at GASAG Solution Plus
- BMW second life battery farm, Leipzig
- 4 Siemens factories, Berlin
- Germany's biggest PtH (120 MW) at Vattenfall
- High temperature heat storage (600 ° C) by Lumenion, GEWOBAG, Vattenfall
- Fluid ice storage unit, ILK Dresden
- Flexibility in water & sewage treatment, BWB

Flexibility platform for grid congestion management

Approach and intermediate results of selected partners

- Identifying flexibility options (technical potential)
- Developing use cases for flexibility (economic potential)
- Creating value from energy data (digitalisation in the energy space)
- ✓ Field test (blueprints, narrative, dissemination)

- WindNODE flexibility platform starts test operation, 11 Nov 2018, by 50Hertz, Stromnetz Berlin and various DSOs
- First real trade at the flexibility platform, 14 March 2019, with offers by Lidl, Siemens and Vattenfall
- Continuation of test operation



Unrestricted © Siemens AG 2019

Page 24 September 2019

Demand Side Flexibility Collection of flexibility potentials

Driver and barriers for industrial load management

	Energy costs are small compared to total production costs (processes looked at above)
Barriers	High implementation effort (change in manufacturing setup)
	Future competition: Flexible power applications, e.g. e-mobility, P2G and power storages

Drivers	Increase of renewables installation/ decrease of controllable power generation New energy services (e.g. flexible electricity tariffs) Flexibility friendly or obligate regulation Synergies with predictive maintenance and energy efficiency measures Increasing digitalization of production Increasing demand of carbon neutral power
---------	--

Unrestricted © Siemens AG 2019

Page 26 September 2019

New perspectives on energy transition: "Energy & Art"

The vision: "Joint responsibility for a successful energy transition"

One example out of 50 artworks which have been jointly created in groups of energy experts together with artists