Clean Energy Ministerial (CEM)

High-level global forum to promote policies and programs that advance clean energy technology, to share lessons learned and best practices, and to encourage the transition to a global clean energy economy.

Three Main Activities

• **High-level policy dialogue at annual ministerial meetings** helps advance international collaboration to accelerate the adoption of clean energy policies and practices.

• **Public-private engagement** builds the industry, government, and civil society cooperation needed to scale up clean energy around the globe.

• Year-round work through action-driven, transformative clean energy initiatives and campaigns expands the deployment of clean energy technologies, policies, and practices.

Members
Electric Vehicles Initiative (EVI)

Multi-government policy forum dedicated to conducting collaborative activities that support the design and implementation of domestic electric vehicle (EV) deployment policies and programs

In 2010, EVI was one of several initiatives launched under the CEM

Currently co-chaired by Canada and China, and coordinated by the IEA

Released several analytical publications, demonstrating leadership to strengthen the understanding of the opportunities offered by electric mobility to meet multiple policy goals

Instrumental to mobilize action and commitments (Paris Declaration on Electro-Mobility and Climate Change at COP21, Government Fleet Declaration at COP22)

Launched the EV30@30 Campaign in June 2017

Now launching the Pilot City Programme

Also working with the Global Environment Facility on the preparation of a project for the support of EV policy-making in developing regions
EV30@30 Campaign

Designed to accelerate the global deployment of electric vehicles
Sets a collective aspirational goal to reach 30% sales share for EVs by 2030
Launch at the 8th CEM meeting, in Beijing, by Minister Wan Gang

Implementing actions include:

• Supporting the deployment of chargers and tracking its progress,
• Galvanising public and private sector commitments for electric vehicle (EV) uptake in company and supplier fleets
• Scaling up policy research and information exchanges
• Supporting governments in need of policy and technical assistance through training and capacity building
• Establishing the Global EV Pilot City Programme, aiming to achieve 100 EV-Friendly Cities over five years

Supported buy several partners
Global EV Outlook 2018

- EVI flagship report by the IEA
- 2018 edition includes
 - Data reporting (EV stock, sales, EVSE, battery costs)
 - Overview of existing policies
 - Battery technology and cost assessment
 - Implications on the TCO of road vehicles
 - Role of EVs in low carbon scenarios (2030 timeframe)
 - Electricity demand, oil displacement and GHG emission mitigation
 - Material demand
 - Policy recommendations
- 2018 edition also paired with the Nordic EV Outlook 2018
 - Focus on one of the most dynamic global regions for EV uptake
 - Opportunity to learn on policy efficacy and consumer behaviour
The number of electric cars on the road continues to grow.

The electric car stock exceeded 3 million in 2017.

However, electric cars still only represent 0.3% of the global car fleet.
Electric car sales are on the rise in all major car markets. China is the largest electric car market globally, followed by Europe and the US. Norway is the global leader in terms of market share, with 40% in 2017.
Electric mobility is not limited to cars

Electric 2-wheelers: major phenomenon in China, where there are 250 million in the rolling stock and 30 million sales per year.

Low Speed Electric Vehicles: estimated at 4 million units in China (sales above 1 million). Not favoured by policy support but by cost and practicality (small size, no driving license/registration required).

Buses: 360,000 in China. Close to 90,000 sales in 2017. Stimulated by policy support.

Growing interest in C40 cities (better economics: not only pollution and climate-driven phenomenon).
EV uptake is still largely driven by the policy environment

- All 10 leading countries in electric vehicle adoption have a range of policies in place to promote the uptake of electric cars

- Policies have been instrumental to make electric vehicles more appealing to customers, reduce risks for investors and encourage manufacturers to scale up production

- Key instruments deployed by local and national governments for supporting EV deployment:
 - public procurement
 - financial incentives facilitating the acquisition of EVs and reducing their usage cost (e.g. by offering free parking)
 - financial incentives and direct investment for the deployment of chargers
 - regulatory instruments, such as fuel economy standards and restrictions on the circulation of vehicles based on their tailpipe emissions performance
2017 policy updates: China

- **New Energy Vehicle (NEV) credits mandate**
 - Target of the NEV credit mandate is 10% of the passenger car market in 2019, and 12% in 2020

- **Vehicle Subsidy Program**: subsidies for the purchase of electric cars, dependent on three characteristics: the vehicle range (in km), energy efficiency (in kWh/100km) and battery pack energy density (in Wh/kg)

- **Electric bus sales in China** also promoted primarily by subsidies
 - Started in 2009 by the central government, supplemented by support from local authorities (pilot cities) and progressively reduced over time
 - Policy update in 2017 to prevent fraud: overall subsidy reduced and converted into operational subsidies to target the support scheme to transit operators of electric buses

- **China is considering a national ban on ICE cars running on fossil fuels**
2017 policy updates: European Union

- Update of the CO₂ emissions standards for new cars and LCVs (to 2030)
 - Inclusion of an incentive scheme aiming to stimulate the uptake of zero- and low-emission vehicles
 - The incentive scheme reduces (by up to 5%) the overall CO₂ target for manufacturers that exceed the 2025 (15%) and 2030 (30%) low- and zero-emission vehicle market share thresholds (shares calculated using weights)
 - No penalty for non-compliance of low-or zero emission targets
- France, Ireland, the Netherlands, Slovenia, Sweden, UK (+ Norway) pledged to end sales of ICEVs by 2030 to 2040
- Selected examples of policies on zero emission buses:
 - Public procurement (Clean Vehicles Directive)
 - Netherlands: aims for all emissions-free bus sales by 2025 & all-electric stock by 2030
 - C40 fossil-fuel-free streets declaration: only electric buses would added to the municipal fleets of Barcelona, Copenhagen, London, Milan, Oxford and Paris (plus others globally)
- EU roadmap: aim to reduce its GHG emissions by 80% in 2050 compared with 1990 levels
 - Emissions from transport could be reduced to more than 60% below 1990 levels by 2050
2017 policy updates: India

- **Dynamic situation:**
 - FAME: incentive scheme that reduces the upfront purchase price of hybrid and electric vehicles (launched in 2015)
 - April 2017: vision aiming to have an all-electric vehicle fleet by 2030
 - September 2017: Tata Motors won 1st public procurement EV tender by EESL
 - December 2017: SIAM white paper proposing a pathway towards all new vehicle sales being all electric by 2047 and 100% of intra-city public transport as all electric by 2030
 - February 2018: Ministry of Heavy Industries and Public Enterprises stated that it had not set any target for electric cars for 2030 and referred back to FAME scheme for EV policy
 - February 2018: launch of the National E-Mobility Programme by the Ministry of Power. Focusing on creating the charging infrastructure and a policy framework so that by 2030 more than 30% of vehicles in India are electric

- Greater coordination needed, but positive signs for EVs
2017 policy updates: United States

• Federal level revision of fuel economy standards announced in April 2018
 Details of new standards still unknown

• California (granted a waiver by EPA to regulate CO$_2$ emissions) vowed to
 stick with the stricter rules
 o A number of other States followed California on this

• ZEV mandate also increased in ambition in California and other States
 o 1.5 million ZEVs and 15% of effective sales by 2025, 3.3 million in 8 States combined (California, Connecticut, Maryland, Massachusetts, New York, Oregon, Rhode Island, Vermont)
 o Target of 5 million ZEVs by 2030 in California

• There is a risk of a double standard in the US market
 o More stringent rules for cars sold in California and the States that follow its lead
 o Weaker rules for the rest of the States
National and local announcements for EVs and towards the end of ICEs

Table 2.3 • Announced sales bans for ICE vehicles

<table>
<thead>
<tr>
<th>Country</th>
<th>2025</th>
<th>2030</th>
<th>2032</th>
<th>2040</th>
<th>2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Scotland</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ⬤ ICE sales ban or 100% ZEV sales target
- ⬤ Fleet without ICES

Table 2.4 • Announced access restriction mandates in local jurisdictions

<table>
<thead>
<tr>
<th>Local jurisdiction</th>
<th>2024</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athens</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auckland</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balearic Islands</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Town</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese Taipei</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copenhagen</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madrid</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico City</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milan</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Oxford</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Paris</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quito</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rome</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockholm</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Victoria</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
</tbody>
</table>

- ⬤ Diesel access restrictions
- ⬤ ICE access restrictions
- ⬤ Fossil-Fuel-Free Streets Declaration
- ⬤ ICE access restrictions

+ EV30@30 and country/state-level EV targets

ICE phase-out pledges have been mainly announced in Europe. China has also mentioned that it is considering the ICE phase out.
Charger deployment accompanies EV uptake

EV owners charge mostly at home or at work: private chargers far exceed publicly accessible ones.

Publicly accessible chargers important to ensure EV market expansion, fast chargers essential for buses.
Charger deployment also currently supported by policy

Major markets such as China, the European Union and the United States clearly have ramped up their ambition to install fast charging facilities along highways.

- **Cities are using a variety of measures to support charger deployment**
 - **Four main categories**: targets, financial incentives, regulatory requirements (building codes) and direct deployment of chargers
EVs lead to higher electricity demand...

Around 91% of the power for electric vehicles in 2017 was consumed in China.
The share of electricity demand from EVs was 0.8% in China and 0.5% in Norway.
...but they enable reductions in oil use, GHG & pollutant emissions

- EVs consume (in final energy terms) half to one third of the energy used by ICE powertrains
 - This is due both to the higher efficiency of the powertrain and the EVs’ ability to regenerate kinetic energy when braking

- EVs displaced 0.4 mb/d of diesel and gasoline demand in 2017
 - The majority of the displacement is attributed to two- and three-wheelers (73%), the rest to buses (15%) and LDVs (12%)

- EVs also allowed to reduce global well-to-wheel CO₂ emission savings of 29.4 Mt CO₂ in 2017, and abated pollutant emission savings in high exposure areas (urban environments), thanks to zero tailpipe emissions
EV batteries

Technology development and costs
The role of consumer electronics for Li-ion battery improvements

Consumer electronics led to cost declines (through technology progress and scale) for Li-ion in the past. This benefited both EV packs, now set to deliver the next scale up, and stationary storage.
Li-ion expected as the technology of choice for the next decade

Li-ion will continue to improve, thanks to several enhancements possible in battery performance.

Other technology options will be ready after 2025, and scaled up in the following years.
Battery size and manufacturing capacities have sizable impacts on the cost of batteries per kWh. Over time, both these factors will help delivering significant cost reductions.

Note: graphics developed for BEV batteries for cars.
Lithium-ion batteries: further cost reductions at reach...

The combined effect of manufacturing scale up, improved chemistry and increased battery size explain how battery cost can decline significantly in the next 10 to 15 years.
… and this has implications for the cost competitiveness of EVs

LDVs - BEV

Small car - Gasoline price: USD 1.5 /L

- Battery price:
 - Cost difference (thousand USD)
 - 15
 - 800
 - 200
 - 15
 - 20
 - 200
 - 10
 - 5
 - 0
 - 5
 - 15
 - 20
 - 10 20 30 40 50

Annual mileage (thousand km)

2-wheelers

Gasoline price: USD 1.5 /L

- Cost difference (USD)
- 800
- 400
- 200
- 100
- 50
- 10
- 5
- 0
- 5
- 10
- 15
- 20
- 10 20 30 40 50

Annual mileage (km)

Buses

High income

- Diesel price of USD 1.4 /L, electricity price of USD 0.13 /kWh
- Diesel price of USD 0.9 /L, electricity price of USD 0.13 /kWh

- TCO differential (ICE -BEV)
- (USD/km)

- Annual mileage (thousand km/year)

BEVs are most competitive in markets with high fuel taxes and at high mileage

At a USD 120/kWh battery price and with EU gasoline prices, BEV are competitive even at low mileage

The economic case for electric two-wheelers is strong: in countries with high fuel taxes electric two-wheelers are already cost competitive with gasoline models

Electric buses travelling 40 000-50 000 km/year are cost competitive in regions with high diesel taxation regimes if battery prices are below USD 260/kWh
The EV30@30 Scenario sees almost 230 million EVs (excluding two- and three-wheelers), mostly LDVs, on the road by 2030. This is about 100 million more than in the New Policies Scenario.
Estimates based on manufacturers’ projections suggest an uptake of electric LDVs ranging in-between the New Policies and the EV30@30 scenarios by 2025.
Regional insights on the GEVO 2018 scenarios

EV market share by mode in a selection of regions, NPS and EV30@30 scenario, 2030

China and Europe are the global regions with the fastest development of EVs in both scenarios and in virtually all modes.
Two-wheeler and bus electricity demand make China the highest consumer of electricity for EVs in both scenarios. In the EV30@30 Scenario, electricity demand for EVs is more geographically widespread.
In 2030, CO$_2$ emissions associated with the use of EVs is lower than those of equivalent ICE vehicles at a global scale, even if electricity generation does not decarbonise from current levels.
Demand for battery capacity for electric vehicles, primarily PLDVs, is projected to increase to 0.78 TWh per year in the New Policies Scenario and 2.2 TWh per year in the EV30@30 Scenario and to 2030.
Material demand

Lithium and cobalt demand from electro mobility in 2030 will be much higher than current demand.

Developments in battery chemistry can greatly affect future demand.
Policies favouring the transition to electric mobility

- Carbon pricing of fuels
- Public procurement
- Bridging the price gap
- Emission regulations/fuel economy standards
- Local initiatives to regulate access
- Complementing fuel taxes with road pricing
- Supporting the roll out of private and public chargers
- Achieving demand- and business-driven EVSE development
- Ensuring that EVs are effectively integrated in the electricity grid
- Managing changes in material demand from EV batteries
- Managing the battery end-of-life treatment