Going for deep decarbonisation: Integrated strategies to strengthen energy efficiency and renewable energies. Lessons learned from planning and implementing Germany's Energiewende

German-Japanese Energy Dialogue

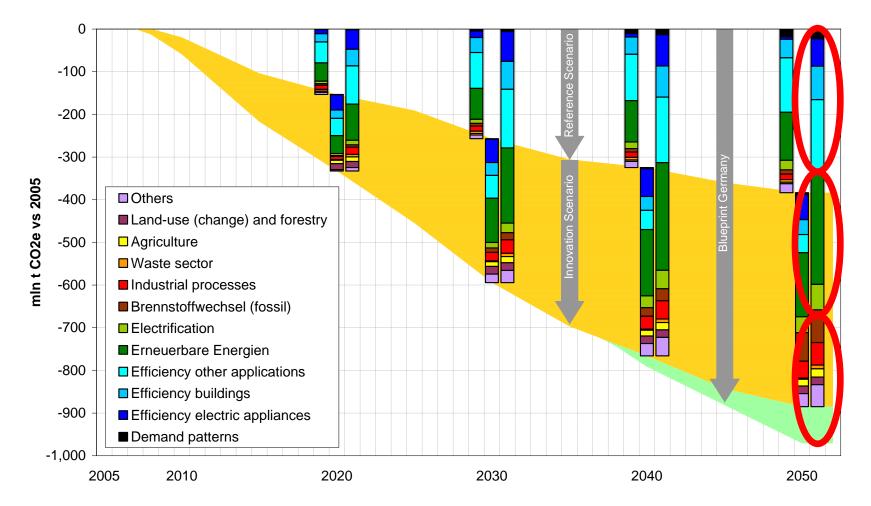
» Energy efficiency first and renewable energies. How energy transition can be made a success «

Dr. Felix Chr. Matthes Tokyo, 15th November 2016

Reminder

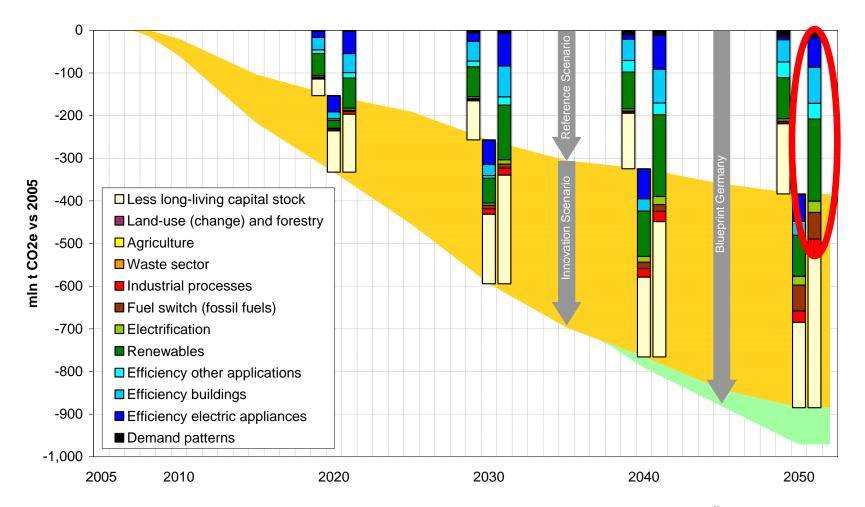
A goal without a plan is just a wish.

Antoine de Saint-Exupéry (1900 - 1944), French writer

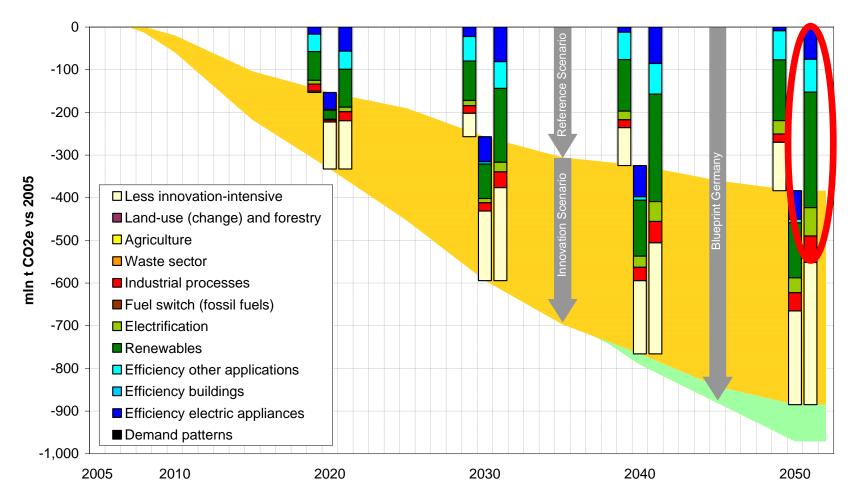

vw.oeko.de

'Energiewende': The German energy transition as a comprehensive and long-term project

	Targets as of												
	2010	2016	2016	2016	2016	2016	2010	2014	2010	2010	2010	2010	2011
	Greenhouse gas emissions						Renewable energies		Energy efficiecy				Nuclear energy
	Total	Energy sector	Buildings	Transport	Industry	Agri- culture	Gross final energy	Power gene-ration	Primary energy	Space heating	Final energy ransport	electricity con- sumption	
2011													-41%
2015													-47%
2017													-54%
2019	-40%	409/						35%	-20%	-20%	-10%	-10%	-60%
2020	-40 /0	-40 /6							-20 /6	-20 /6	-1076	-10/6	-80%
2022										-100%			
2025								40 to 45%					
2030	-55%	-61 to -62%	-66 to -67%	-40 to -42%	-49 to -51%	-31 to -34%	30%						
2035								55 to 60%					
2040	-70%						45%	65%					
2050	-80 to -95%						60%	80%	-50%	-80%	-40%	-25%	
Base year	1990	1990	1990	1990	1990	1990	-	-	2008	2008	2005	2008	(2010)


... are key pillars (each representing 1/3 of the total implemented potential). Aggressive policies are needed for each of these major pillars.

Emission reduction contributions A fresh look on priorities ...


... is needed. The appropriate timing of modernization is key - if one reflects the key role of long-living capital stocks (~60% of potential)

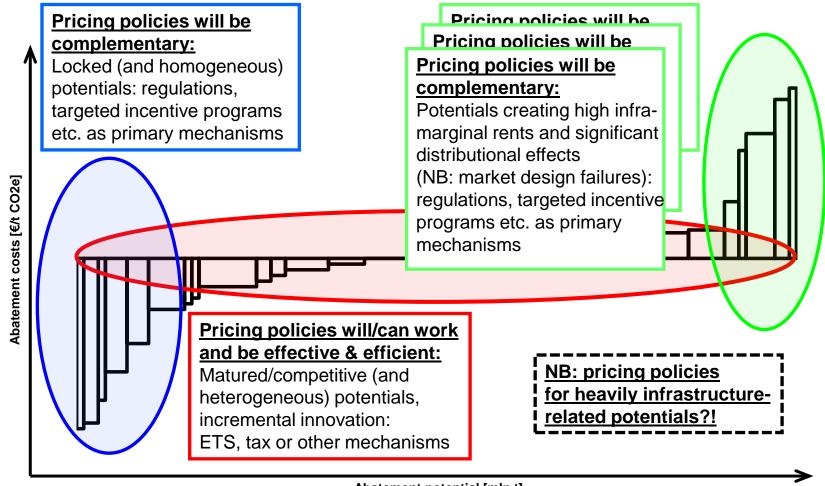
Emission reduction contributions A fresh look on priorities ...

... is needed. Innovation is key, innovative greenhouse gas emission reduction options must deliver in time (representing 60% of potential)

IEEJ: November 2016 © IEEJ2016

www.oeko.d

Designing strategies for sustainable energy system Key challenges (The four "A" questions)


- Will the (supply/emission abatement) potentials be <u>available</u>?
 - Huge technological progress during the last decades and many technological promises
- Will t be possible to exploit these potentials over time in a way that the targets are <u>achievable</u>?
 - Lifetime of capital stocks is key
 - Infrastructures are key
 - Innovation is key
- Will the costs and the related distributional effects emerge at levels that make the transformation <u>affordable</u>?
 - Many analysis shows: it is affordable (GDP ±1% in 2050, managing transition costs and distributional effects is however crucial)
- Will it be possible to design the transformation in a robust way that is acceptable for the public?
 - Interfaces between the energy system and the society will broaden, (economic) participation is key

/ww.neko.de

Energy transition What do we know and what are the challenges?

- Energy transition: a policy-driven structural change of the energy system
- The target system is technically feasible and affordable
 - manifold options at the supply & flexibility side exist already or are in the pipeline
 - total system costs of the target system do not differ significantly from the counter-factual, transition costs and distributional effects could however be significant
- The real challenges arise from structural changes that needs to be reflected carefully for the design of the transition process
 - structurally changing technology patterns
 - structurally changing economics (a zero marginal costs system)
 - structurally changing players / market participants
 - structurally changing spatial patterns

www.oeko.de

Effective, innovative & efficient strategies The Four-Pillars Approach

- Paving the way for energy efficiency, clean generation & flexibility options (renewables & complementary flexibility)
 - innovation, level playing field & roll-out for renewables (☺) and energy efficiency (☺)
 - sustainable economic basis (coordination & enabling investments) (
 (
)
- Designing the exit-Game for the non-sustainable capital stocks
 - appropriate mechanisms that address security of supply, flexibility, emission levels and fixed costs ((a)) – for nuclear power ((a)) and high-carbon assets ((8))
- Triggering the necessary infrastructure adjustments with sufficient lead-times 🖰
 - integration of centralized, distributed, storage & DSM/flexibility options
 - reflection of the new geography of the energy system
- Making the necessary innovation work in time [©]
 - for energy efficiency, generation, flexibility, storage and integration

Thank you very much

Dr. Felix Chr. Matthes
Energy & Climate Division
Berlin Office
Schicklerstraße 5-7
D-10179 Berlin
f.matthes@oeko.de
www.oeko.de
twitter.com/FelixMatthes

