Comments on presentation of Dr. Faith Birol

Highly appreciate IEA's contribution (WEOs, Series of Energy and climate change publications)

Mitsutsune Yamaguchi, Special Advisor Research Institute of Innovative Technology for the Earth

Pros and Cons of Paris Agreement Important first step

Pros (great success for the first step)

- Transformation of Berlin Mandate (CBDR)
- All countries' participation
- From Top-down to Bottom-up (pledges)
 Cons (unrealistic top-down goal)
- Top-down goal and inconsistency with pledge
- No science, no cost, no uncertainty
 - (2, let alone 1.5 degree)

Can Paris Agreement survive?

Why 2 degree? Break down a taboo!

• Is it feasible?

Negative emissions (feasibility and risk/risk trade off) IEA: 2.6 °C, MIT: 3.5 °C (INDCs, if implemented)

- Not based on Science nor Economics William Nordhaus (The climate casino), Robert Stavins (ICEF)
- Breach it almost certainly will be. The Economist Dec. 5, 2015
- The 2 degree dream Nature, 26, November 2015

• Climate Scientists are split on 2 degree goal Wall Street Journal, November 30, 2015

Uncertainty: Climate sensitivity

Median values

CO ₂ eq Concentrations in	Subcategories	Change in CO₂eq emissions in 2050	2100 Temperature change [°C] (relative to 1850-1900)			
2100 [ppm CO ₂ eq]		[%]	uncertainties not included	uncertainties included		
450 (430-480)	Total range	- 72 ~ - 41	1.5 ~ 1.7	1.0 ~ 2.8		
500	No Overshoot	- 57 ~ - 42	1.7 ~ 1.9	1.2 ~ 2.0		
(480-530)	Overshoot	- 55 ~ - 25	1.8 ~ 2.0	1.2 ~ 3.3		
550	No Overshoot	- 49 ~ - 19	2.0 ~ 2.2	1.4 ~ 3.6		
(530-580)	Overshoot	- 16 ~ + 7	2.1 ~ 2.3	1.4 ~ 3.6		
(580-650)	Total range	- 38 ~ + 24	2.3 ~ 2.6	1.5 ~ 4.2		
(650-720)	Total range	- 11 ~ + 17	2.6 ~ 2.9	1.8 ~ 4.5		
(720-1000)	Total range	+ 18 ~ + 54	3.1 ~ 3.7	2.1 ~ 5.8		

3°C ECS was used in the above table, though there is no consensus

Uncertainty includes those of carbon cycle and climate system Extract from IPCC/AR5/SG3/SPM

IPCC Report	Published in	Climate sensitivity	Best estimate
1 st Assessment R.	1990	1.5 - 4.5 °C	2.5 °C
2 nd Assessment R.	1995	1.5 – 4.5 °C	2.5 °C
3 rd Assessment R.	2001	1.5 - 4.5 °C	2.5 °C
4 th Assessment R.	2007	2.0 - 4.5 °C	3.0 °C
5 th Assessment R.	2014	1.5 - 4.5 °C	Not shown

Change of climate sensitivity in past IPCC reports

Impact of climate sensitivity (ECS)

We need Risk Management Strategies

• If it were 2.5°C (Kaya, Yamaguchi and Akimoto 2015)

CO ₂ e concentration (ppm)	400	450	500	550	600	650	700	750	800
Median temperature	1.3°C (2.3°F)	1.8°C (3.2°F)	2.2°C (4.0°F)	2.5°C (4.5°F)	2.7°C (4.9°F)	3.2°C (5.8°F)	3.4°C (6.1°F)	3.7°C (6.7°F)	3.9°C (7.0°F)
increase Chance of >6°C (11°F)	0.04%	0.3%	1.2%	3%	5%	8%	11%	14%	17%

Even based on ECS of 2.6°C IEA New Policy Scenario will reach 700ppm in 2100 (p. 87, WEO 2014) (Wagner and Weitzman 2014)

Suggestions

• Make 2°C (and 1.5°C) target as aspirational goal

Better a strong weak agreement than weak strong agreement that may collapse

Lessons learnt from VW case

Temperature is out of control

• Alternative Strategies

Long-term zero emissions goal regardless of temperature increase with transit mid-term goal of low carbon society

International co-operations of technology innovation such as SSP, nuclear fusion are essential