October 13th, 2015

France-Japan Smart Community Forum ADEME-NEDO seminar on smart grids & Lyon smart community project

The current approaches and issues

on the smart community verification projects in Japan

Naoji Yamamoto

Senior Researcher Smart Community Group Electric Power Industry and Smart Community Research Subunit Fossil Fuels and Electric Power Industry Unit THE INSTITUTE OF ENERGY ECONOMICS, JAPAN(IEEJ)

IEEJ:November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved

The current situation of the smart community verification projects in Japan p1

The overview image of 4 area projects

IEEJ:November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved.

The type of energy management

		Main inspection item			
Туре	Explanation of outline	Energy saving	Carbon dioxide emissions reduction	Power peak-cut	
Case I Dynamic pricing The verification experiment of the DR which is led by electricity rate $\overrightarrow{P4} \sim \overrightarrow{P6}$	 ✓ Assume tightness of electric power supply and demand. ✓ Control electricity rates for targeted general households. ✓ Recommend the verification participant about an electricity rate of the peak time of the day beforehand on the previous day of the DR day. ✓ Monitor reaction of consumers for energy saving . 	(▲)			
Case II The verification experiment of the DR using EMS □> p7 ~ p12	 Control power demand by using EMS for each sector including residential, business, industrial, transportation, or a whole community. Monitor reaction of consumers for energy saving and adjustment of supply and demand by DR. 				

The basic specification for Dynamic Pricing

р4

			Basic sp	ecification * DR	Dynamic Pricing ^{* 2}				
		Smart	Visualization of the electric	Recommend	d of the DR	ΤΟυ	CPP * 3		
	meter amount		amount of consumption ^{*1}	Home display	PC or Smart phone, etc.	(Time of Use)	(Critical Peak Pricing)		
	eekday Jsually)		•	_	_	•	_		
Sev	of the DR eral times uring the e season		•	•	•	_	• (Multi-step type)		
e	Approaches for effective improvement ** 1 Improvement of the visualization effect : The visualization of the electric amount of consumption with an additional value. (Ranking indication, etc.) ** 2 Improvement of TOU and CPP effect : The consulting for energy saving. (Energy saving method or recommend replacing old appliances, etc.) ** 3 Joining promotion of the CPP (opt-in type) : "Bill Protection" (Notify electricity rate of CPP service) "Shadow Billing" (Compare charges between CCP rate and usual rate)								
		Ima	ge of TOU			Image of C	PP		
• The unit price of electricity rate is fixed rates for emergency peak.							multiplied by 4		
Electric		V	Veekday		rate beforeh previous day Day	of the DR	Base multiplied by 2		
				Base		Peak t	Base		
0	am 7 a	m		11 pm 12 pm IEEJ : November 20	0 am 7 am ^{15,} Copyright© The		4 pm 11 pm 12 pm ics, Japan All Rights Reserved.		

The system configuration which achieves Dynamic Pricing p 5

※DR : Demand Response

IEEJ: November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved.

Case I The consideration of a result of a dynamic pricing verification experiment p 6

	Yokohama city		Toyota city	Keihanna (Kyoto area)	Kitakyushu city	
Verification period		Apr. 2013 - Sep. 2014	Jan. 2013 - Feb. 2014	Jul. 2012 - Feb. 2014	Jul. 2012 - Feb. 2014	
Participation enterprise		TOSHIBA ,Panasonic etc.	Chubu Electric Power	Mitsubishi Heavy Industries (MHI) Mitsubishi Electric (MELCO) Kansai Electric Power	Fuji Electric	
Number of households (without Photovoltaics)		About 1,080 houses	About 90 houses	About 700 houses	About 180 houses (in a special supply area)	
Electri	fication rate	40%	73%	30%	100% ^{×1}	
	TOU	(Weekday) ¥45∕kWh (Holiday) ¥21∕kWh	Non-publication	(Weekday) ¥20∕kWh	Non-publication	
Electric rate	СРР	¥100∕kWh (1step)	¥50 , 80 , 100⁄kWh (3Step)	¥40 , 60 , 80∕kWh (3Step)	¥50,75,100,150⁄kWh (4Step)	
※ 2	Classification Virtual price		Virtual price	Virtual price	Real price	
Remarks		 Bill Protection Shadow Billing 				
% 2 ¥1 = \$79 (2012.7) ~ \$107 (2014.9) 、€97 (2012.7) ~ €138 (2014.9)						
Effect of the	TOU	(included in the following)	(included in the following)	(Summer)▲9.1% (Winter) ▲11.7%	(The $\triangle 9.1\%$ in the Tokyo result in 2011 is included in the following, because $\% 1$.)	
energy saving	СРР	(Summer)▲9.3%~▲14.9% (Winter) Non-publication	(Summer) ▲11% (Winter) ▲10%	(Summer)▲2.9~▲5.9% (Winter) ▲2.0~▲4.0%	(Summer)▲18.8~▲20.2% (Winter) ▲16.2~▲16.6%	

% It's subtracted according to the electric \$One\$ season amount of consumption used at the DR time.

Image of the analysis of the effect

Image of the effect of an energy saving

IEEJ: November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved.

Case II Yokohama : Case study of the Storage Battery SCADA system (TOSHIBA, etc.) P 8

\odot Characteristic of the storage battery SCADA system $\,$:

• The management system which controls multiple batteries installed in houses, buildings or the community as one virtual battery.

O Advantage of the storage battery SCADA system

- Reduction of the operative cost of the storage battery.
- Realization of "System stabilization" and "Large scale introduction of renewable energy" by using the storage battery.

р9

\supset Approach of the household sector :

• The "V2H" verification experiment which regards a battery for PHV and an EV as one of charging equipment, and charges and discharges a battery.

\supset Approach of the transportation sector :

- Example 1) The verification experiment about the peak-cut and peak-shift of the electric power (Smart charge infrastructure).
- Example² The verification experiment about the supply of electric power to disaster protection shelter base (Fuel cell vehicle :FC Bus).
- Example③ The verification experiment about the Modal shift (One mile mobility: Ha-mo RIDE , etc.).

IEEJ:November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved

Keihanna : Case study of the CEMS and EV (MHI, MELCO, etc.)

Characteristic of the CEMS verification experiment : • The verification experiment of the adjustment type of supply and demand which regards an entire community as a consumer including homes, buildings and EVs, and controls the supply and demand for 24 hours depending on a purpose. • The realization of the energy saving and the carbon dioxide emissions reduction are controlled, and the supply of electric power is linked with a market price. Characteristic of the EVC verification experiment : • The verification experiment to reduce a burden of the system electricity by receiving DR request from CEMS, and controlling a charge timing of EV. **Image of the EVC verification experiment** Image of the adjustment of supply and demand Prediction of the community demand CEMS CEMS **EVC** DR to recommend Photovoltaics 1day before. Total demand DR DR Storage battery DR to recommend 3.3MW 23 units before time. for community (Assumption value) (about 1 hour before) (by the simulator) Hours of DR : 1MW (Assumption value) about 3~1 hours 30k\ ((ຈູ)) $3 \sim 4 k M$ The timing of EV charging is controlled. 10kWh BEMS ^{30kWh} **HEMS EV** and10.5kWh Community demand Assumption demand Batter (kW) about 3MWh 100 units of EV Electricity demand Target demand Send a message to promote EV charge. Within $\pm 3\%$ Charge demand: 30% increase 30-minute balancing rule us electric power EV = Buffer of the (about 80% achievement) (Peak time) surplus electric power

Hour IEEJ:November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved.

p 10

Kitakyushu : Case study of the CEMS (Fuji Electricetc Co., LTD.)

- Cogeneration power plant" and "Regional power saving station" are established in a specific supply area, and a verification experiment with an actual charge base is developed.
- \bigcirc The role of Regional power saving station :
 - \cdot To manage the overall energy services in the area, such as electricity, heat, and water.
 - To provide the low electric charges by controlling the storage battery of the houses or community according to the supply demand situation in the area.

IEEJ: November 2015. Copyright© The Institute of Energy Economics, Japan All Rights Reserved.

\bigcirc The type of energy management :

%DR : Demand Response

After visualizing the electric amount of consumption, mainly, it's classified into 2 types, "the indirect control system which controls person's behavior" and "the direct mechanical control system by which a machine controls itself". • The storage charge is a common indispensable item of each sector as a coordinating role of target achievement and demand fluctuation by PV.

	Basic specification								Type of energy management				
Sector	Smart meter	Visualization of electricity consumption		Renewable	of	Recommend of the DR		Indirect control	Direct control O			Other	
		For manager	For consumers	(PV, etc.)	the demand) (EMS)	Home display	PC or Smart phone, etc	Incentive pay	Storage battery	Heat source equipment	Load control	Charge infra- structure	Shortening of the DR time
CEMS	-	0	-	\bigtriangleup	0	0	-	0	0	-	-	-	\bigtriangleup
HEMS	\bigtriangleup	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigtriangleup	\bigcirc	\bigcirc	\bigtriangleup	\bigtriangleup	-	-
BEMS FEMS	\bigtriangleup	\bigcirc	0	\bigcirc	0	0	-	0	0	0	0	-	-
EVC	\bigtriangleup	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\triangle	\bigcirc	\bigcirc	-	-	0	\bigtriangleup
Remarks	There are measurement methods with CT and the tap.							• The effect is limited.		• Introduce energy saving equipment and gas equipment. • Expansion of the heat supply. etc			
Prior steps for managing electricity demand	Visualization	or electricity consumption (Confirmation of results)		Acceptance of the renewable energy	Prediction of the demand (Setting of the target)	Recommendation of DR	COR to recommend 1 day before. . DR to recommend before time.	Co person'	+	veriav Econo			+ Control time

The consideration of issues based on 4 area verification projects

Sector	Issues	Expected domains in future
Community (or Area)	 How to secure funds for the DR incentive payment. Development of the capacity market and PPS market. Expansion of the equipment and sector for the DR service. 	 Energy aggregator business. Application of CEMS as a method to reinvigorate local economy. e.g. Service to promote purchasing will of consumers and change their actions.
Household	 How to secure funds for the DR incentive payment. Expansion of the household appliance and equipment for the DR service. Durability of energy saving behavior and visualization effect . 	 Develop mechanism for surplus electric power generated from PV within a home. e.g. Dissemination of HEMS, PV, Storage battery as a set. Harmonize between energy and services and closely link with daily life. e.g. Management of health and medical care, crime prevention, and the distribution network.
Business and Industrial	 How to secure funds for the DR incentive payment. Improvement of the precision of the demand prediction technology (Avoid imbalance). Introduction of EMS based on cost-effectiveness (Development of the local implementation type and the cloud type depending on a building scale). 	 Business of the negative watt in the electric market. e.g. Spread of Cloud based BEMS. Energy saving as the whole energy system. e.g. • Adaptation of the electricity and heat supply as a set in wider area. Expansion of the visualization of the gas demand and the DR service.
Transpor- tation	 How to secure funds for the DR incentive payment. Expansion of the equipment for the DR service. The spread of next-generation cars. The spread of energy filling stations. The spread of traffic management systems (TMS). 	 Promotion business of EV charging using surplus electricity generated by PV. Preparation for the dissemination of TMS. e.g. Establish a dissemination framework including the cooperation with the traffic authorities.

※PPS : Power Producer and Supplier

 It is a common issue to secure funds for the DR incentive pay.
 It's the biggest issue to seek a method of incorporating such a mechanism in the society. This is a more significant issue than a technical issue.

IEEJ: November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved.

p 13

Challenge for the spread of a smart community

*3E+S: Energy Security, Economic Efficiency, Environment and Enfectiver 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved.

URL: http://eneken.ieej.or.jp

Contact :report@tky.ieej.or.jp

IEEJ: November 2015, Copyright© The Institute of Energy Economics, Japan All Rights Reserved