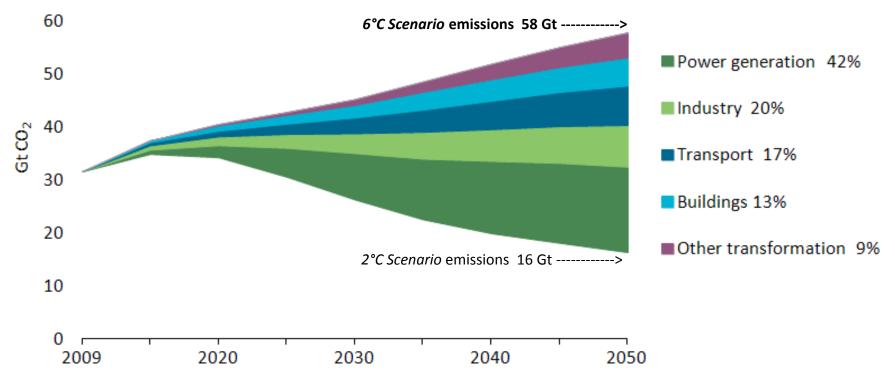
IEEJ : March 2014 All Right Reserved

IEA Technology Roadmaps: Energy Efficient Building Envelopes and Energy Storage

Technology Roadmap Energy efficient building envelopes


28 March 2014 IEEJ, Tokyo

Technology Roadmap Energy storage

IEA Flagship Publication, Energy Technology Perspectives

Source: Energy Technology Perspectives 2012

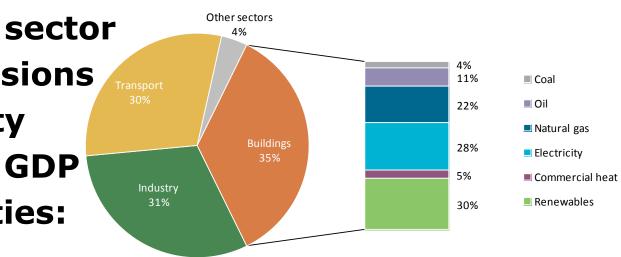
- 6°C Scenario business-as-usual; no adoption of new energy and climate policies
- 2°C Scenario energy-related CO₂-emissions halved by 2050 through CO₂-price and strong policies

ETP 2014 – Release May 2014

Technology roadmaps provide answers

- Engage cross-section of stakeholders
- Identify a baseline
- Establish a vision
- Identify technical, regulatory, policy, financial, public acceptance barriers
- Develop implementation action items for stakeholders

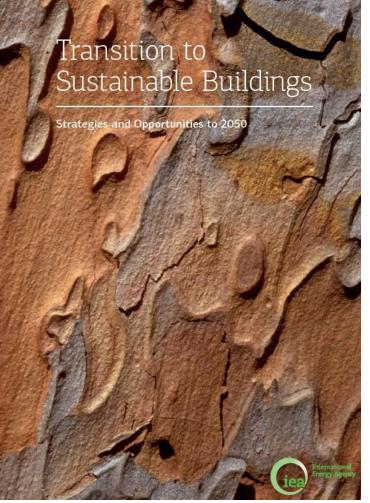
Technology Roadmai



IEEJ : March 2014 All Right Reserved

Importance of Buildings Sector

- Largest end-use sector
- 1/3 carbon emissions
- 50% of electricity
- Major portion of GDP
- Stock opportunities:
 - 75% 90% of OECD building stock still in service by 2050
 - Large population growth in developing world will drive new floor area that needs to be efficient



IEEJ : March 2014 All Right Reserved

Transition to Sustainable Buildings: Strategies and Opportunities to 2050

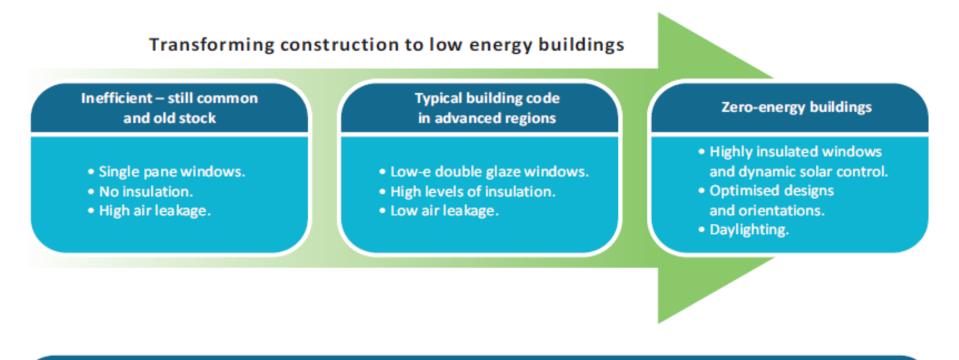
- The overall ETP strategy for buildings
- Global and regional analysis, energy savings and emissions reduction forecasts
- Technical opportunities and recommendations: envelope; heating and cooling; appliances, lighting and cooking
- Policies to transform buildings

IEEJ : March 2014 All Right Reserved

Making buildings more energy efficient

- Construction transformation strategy
- Provides technical, economic and strategic framework
- Assessment of high priority areas for 12 regions of the world
- Policy criteria and evaluation

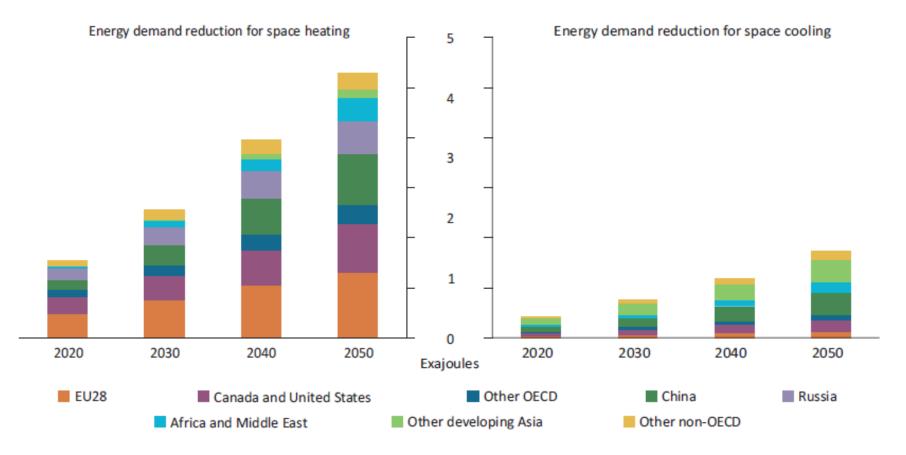
Technology Roadmap


Energy efficient building envelopes

Transformation to Low-Energy Buildings

IEEJ : March 2014 All Right Reserved

International Energy Agency

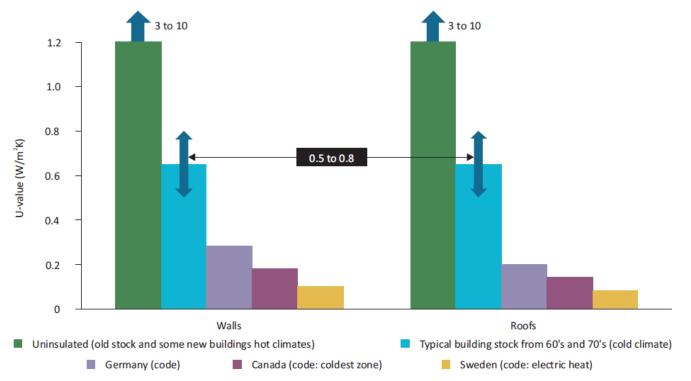

KEY POINT: the world needs to shift from very old buildings to modern buildings, and then to low-energy or zero-energy buildings.

IEEJ : March 2014 All Right Reserved

Envelope Savings Potential

International Energy Agency

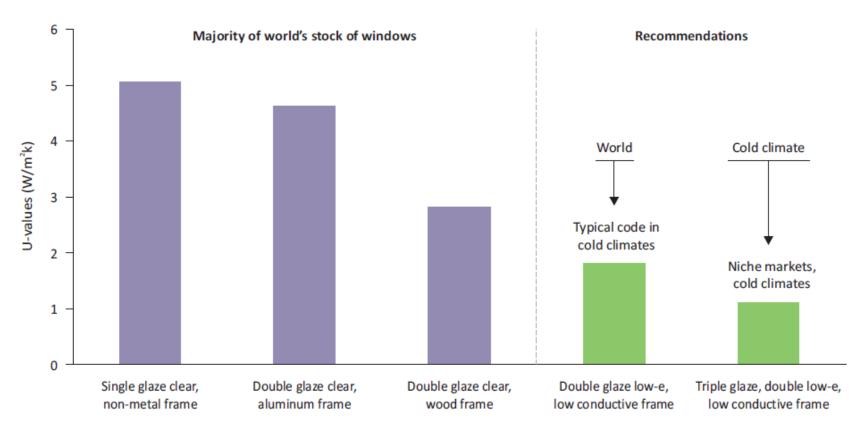
Figure 8: Energy reductions from improvement in building envelopes between the 6DS and 2DS



KEY POINT: building-envelope energy savings under the 2DS are significant, with heating savings around four times higher than cooling savings.

Insulation Opportunity

- Very stringent U-values for electric resistance heaters in Sweden, and Canada's coldest climate zone
- IEA recommending goal for average wall and roof U-values ≤ 0.15 W/m2K cold climate, ≤ 0.35 W/m²K hot climate based on LCC



Source: Adapted from IEA (2013a), "Transition to Sustainable Buildings: Strategies and Opportunities to 2050", Organisation for Economic Co-operation and Development (OECD) Publishing, Paris.

KEY POINT: levels of insulation vary widely for the existing stock of buildings, as well as for new construction.

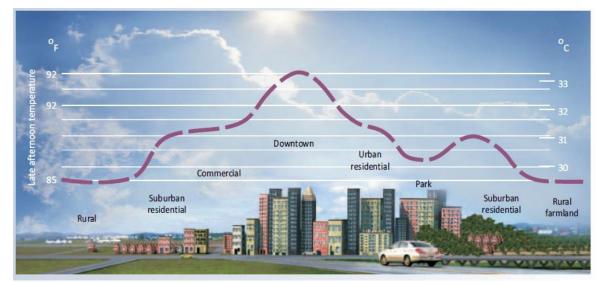
Figure 3: Most common types of windows in service and being sold today

Note: U-values presented in this roadmap represent whole-window performance unless noted in accordance with ISO 15099, thus an ISO 10077 standard of 1.0 W/m²K is roughly equal to 1.1 W/m²K per ISO 15099.

KEY POINT: the majority of the world's installed windows can be significantly improved and more work is needed to ensure that new sales meet more stringent performance criteria.

iea

International


Energy Agency

Reflective Roof Opportunity

Table 3: Performance characteristics and energy-savings potential for reflective roofs

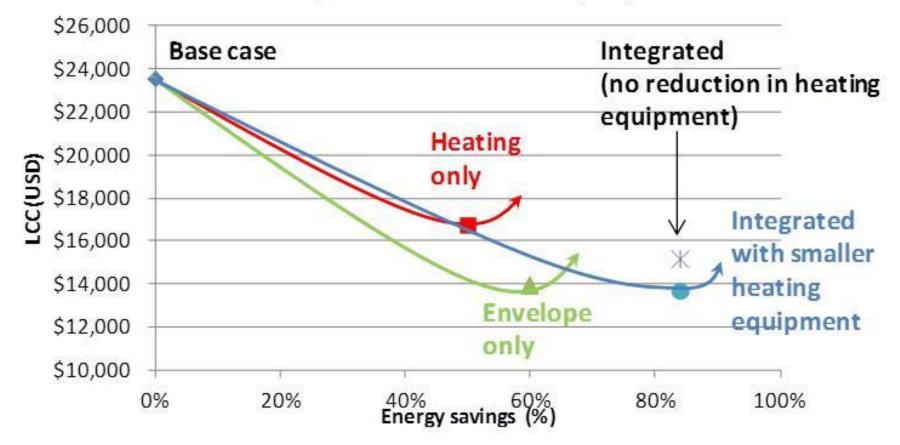
	SR of a dark roof	SR of a white roof		Roof energy- savings potential (with high level of insulation)	(with low level of
Roof performance characteristics	SR 5 (black) to SR 20 (grey)	SR 60 (soiled) to SR 80 (clean)	SR 25 (darker colour) to SR 50 (lighter colour)	13%	25%

Note: High insulation refers to a U value of 0.29 W/m²K, and low level of insulation has a U value of 0.51 W/m²K or higher.

Source: LBNL, Heat Island Group

Assessment of Advanced Envelope Components

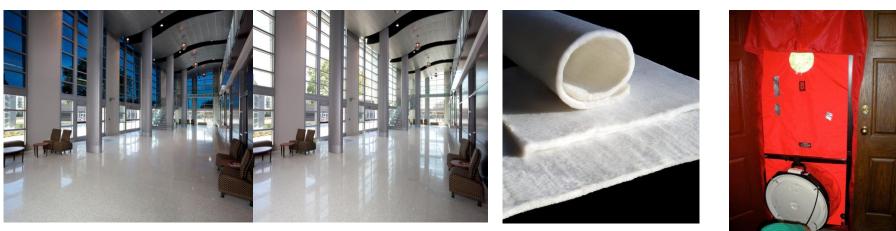
Market maturity/ saturation	ASEAN	Brazil	China	Euro pean Union	India	Japan/ Korea	Mexico	Mid dle East	Australia/ New Zealand	Russia	South Africa	United States/ Canada
Double-glazed low-e glass	•			*		•	•		•	•	•	*
Window films						•			•			•
Window attachments (e.g. shutters, shades, storm panel)	•		•	*		•		•	•		•	•
Highly insulating windows (e.g. triple-glazed)				•								
Typical insulation	*	•	*	*	•	*	•	*	*	*	•	*
Exterior insulation				*		•		•				*
Advanced insulation (e.g. aerogel, VIPs)												
Air sealing				*		•						•
Cool roofs				•								*
BIPV/ advanced roofs												


★ Mature market 🛛 🕘 Established market 🛛 🔺 Initial market

IEEJ : March 2014 All Right Reserved

Integrated Approach with Life-Cycle Cost

LCC analysis of efficiency options



R&D Areas

Source: ORNL © OECD/IEA 2014

- Highly insulated windows (U value ≤ 0.6 W/m²K for ZEB) and dynamic solar control integrated solution increase daylight and passive heating harvesting
- Lower air sealing approaches with validation testing
- Lower cost high performance "thin" insulation
- More durable and lower cost reflective surfaces

Source: Sage Electrochromics (St Gobain)

Source: Aspen Aerogel

Criteria for Policy Assessments, IEA Perspective

IEEJ : March 2014 All Right Reserved

iea, International Energy Agency

Policies	ASEAN	Brazil	China	European Union	India	Japan/ Korea	Mexico	Middle East	Australia/ New Zealand	Russia	South Africa	United States/ Canada
Governance	L	М	Н	Н	М	М	М	L	М	L	М	М
Energy prices	L	М	М	Н	М	Н	L	L	М	L	М	М
Infrastructure and human capacity	М	L	М	Н	М	Н	М	L	М	М	М	н
Commodity of efficient materials	L	М	н	н	м	н	м	L	М	м	L	н
Voluntary programmes	L	L	L	М	L	L	L	L	L	L	L	L
Mandatory building codes	L	L	м	н	L	М	м	L	М	М	м	Н

Note: H: high, M: medium, L: low

IEEJ : March 2014 All Right Reserved

Tracking Progress – Next Steps

International Energy Agency

- Much more data is needed (e.g. new technology adoption rates, market share of zero-energy buildings, etc)
- More specific performance criteria needed even for most advanced regions (e.g. EU specifications for renovation in public buildings)
- IEA is considering a new building's partnership (for policy assessment, to improve data and modeling, and to enable deployment)

DOWNLOAD THE ROADMAP AND ANNEXES AT:

http://www.iea.org/publications/freepublications/ publication/name,45205,en.html

FOR ADDITIONAL INFORMATION CONTACT:

buildingsinfo@iea.org

Contact : report@tky.ieej.or.jp © OECD/IEA 2014

Improving energy system resource use efficiency

iea

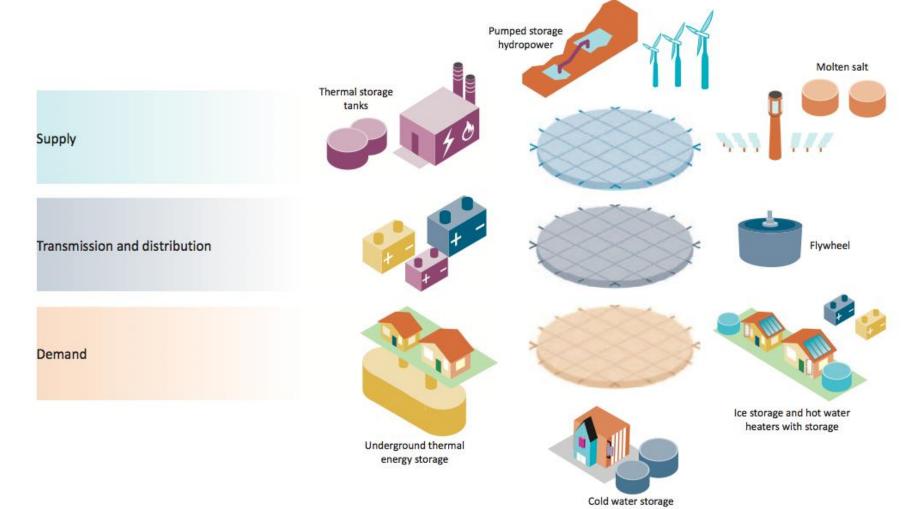
IEEJ : March 2014 All Right Reserved

Integration of higher levels of variable renewables and end-use sector electrification

Energy Agence

- Supports greater production of energy where it is consumed
- Increasing energy access
- Improving grid stability, flexibility, reliability and resilience

Technology Roadmap Energy storage

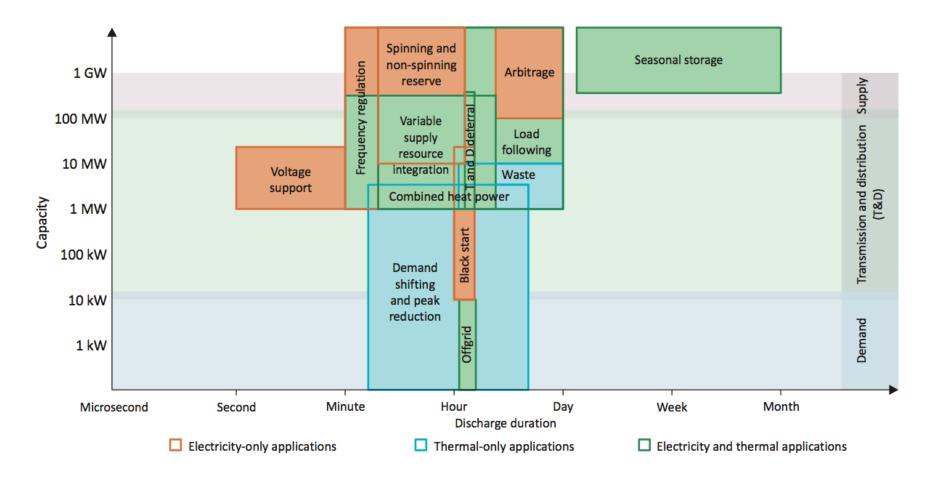


Storage can help to better integrate our electricity and heat systems

International Energy Agency

iea

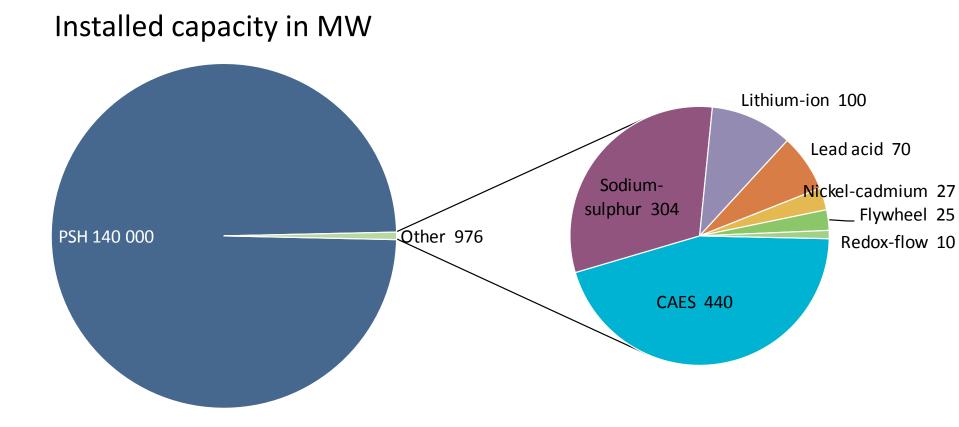
IEEJ : March 2014 All Right Reserved


© OECD/IEA 2014

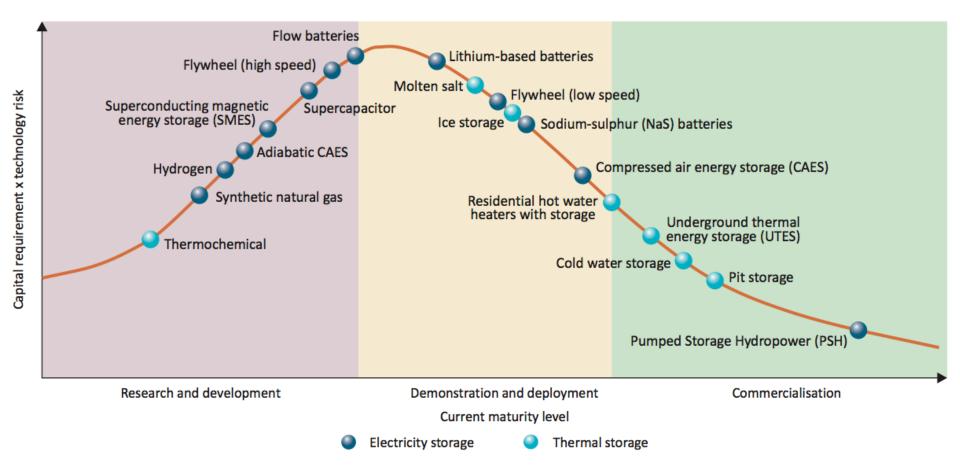
Electricity and thermal storage can provide a wide range of applications

International Energy Agency

iea


IEEJ : March 2014 All Right Reserved

T


Current grid-connected electricity storage dominated by Pumped Storage Hydropower

A wide range of storage technologies exists at different stages of maturity

IEEJ : March 2014 All Right Reserved

International Energy Agency

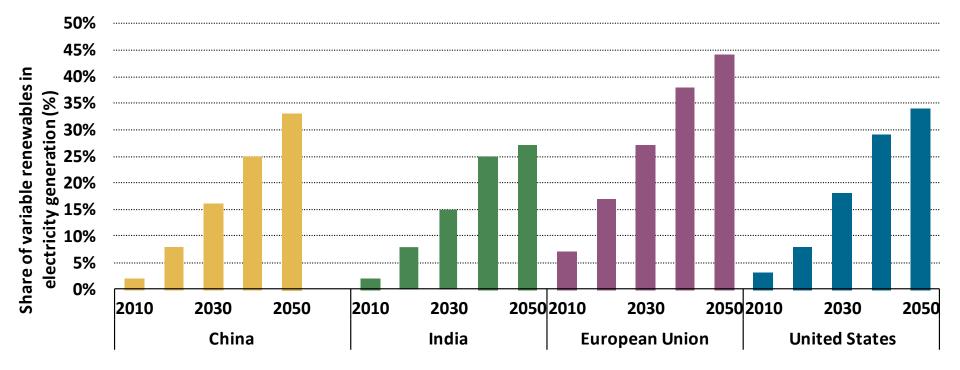
Storage technologies current status

International Energy Agency

Technology	Location	Output	Efficiency (%)	Initial investment cost (USD/kW)	Primary application	Example projects
Pumped storage hydropower	Supply	electricity	50-85	500 - 4 600	long-term storage	Goldisthal Project (Germany), Okinawa Yanbaru Seawater PSH Facility (Japan), Pedreira PSH Station (Brazil)
Underground thermal energy storage	Supply	thermal	50-90	3 400 - 4 500	long-term storage	Drake Landing Solar Community (Canada), Akershus University Hospital and Nydalen Industrial Park (Norway)
Compressed air energy storage	Supply	electricity	27-75	500 - 1 500	long-term storage, arbitrage	McIntosh (Alabama, USA), Huntorf (Germany)
Pit storage	Supply	thermal	50-90	100 - 300	medium temperature applications	Marstal district heating system (Denmark)
Molten salts	Supply	thermal	40-93	400-700	high- temperature applications	Gemasolar CSP Plant (Spain)
Batteries	Supply, demand	electricity	75-95	300 - 3 500	distributed/ off-grid storage, short-term storage	NaS batteries (Presidio, USA and Rokkasho Futamata Project, Japan), Vanadium redox flow (Sumimtomo Office, Japan), Lead-acid (Notrees Wind Storage, USA), Li-ion (AES Laurel Mountain, USA and Community Energy Storage, Canada), Lithium Polymer (Autolib, France) © OECD/IEA 2014

Storage technologies current status

International Energy Agency

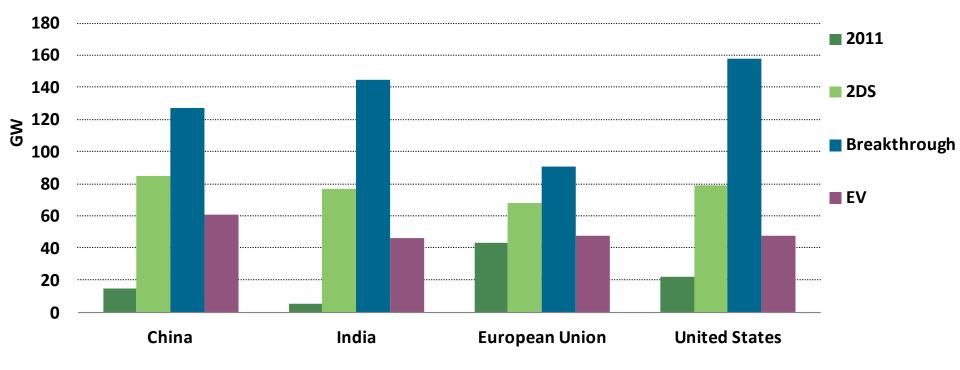

Technology	Location	Output	Efficiency (%)	Initial investment cost (USD/kW)	Primary application	Example projects
Chemical – hydrogen storage	Supply, demand	electrical	22-50	500-750	long-term storage	Utsira Hydrogen Project (Norway), Complementary Systems H2Herten (Germany)
Flywheels	T&D	electricity	90-95	130 - 500	short-term storage	PJM Project (USA)
Supercapacitors	T&D	electricity	90-95	130 - 515	short-term storage	Hybrid electric vehicles (R&D phase)
Superconducting magnetic energy storage	T&D	electricity	90-95	130 - 515	short-term storage	D-SMES (United States)
Solid media storage	Demand	thermal	50-90	500 - 3000	medium temperature	Residential electric thermal storage (USA)
Ice storage	Demand	thermal	75-90	6 000 - 15 000	low- temperature	Denki University (Tokyo, Japan), China Pavilion project (China)
Hot water storage	Demand	thermal	50-90		medium temperature	Peak demand reduction in France, TCES (United States)
Cold-water storage	Demand	thermal	50-90	300-600	low- temperature	Shanghai Pudong International Airport (China)

Storage can help to integrate higher levels of variable renewables

International Energy Agence

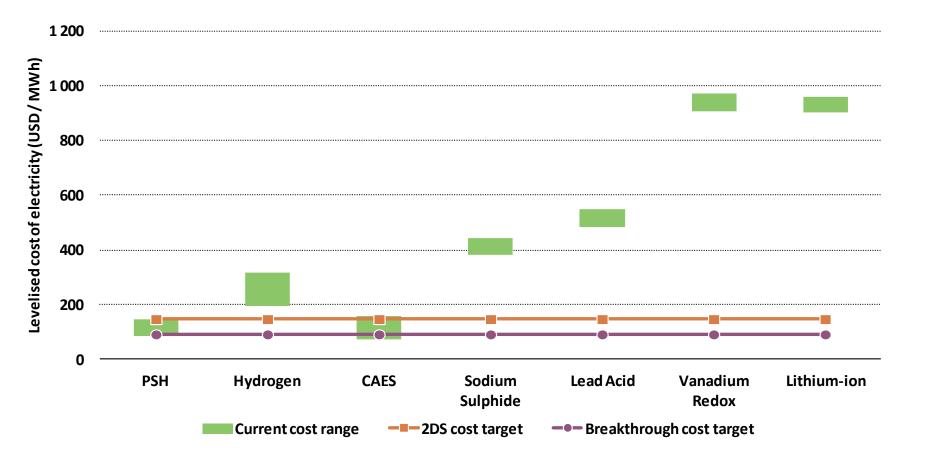
iea

IEEJ : March 2014 All Right Reserved



2DS vision for storage in the electricity systems

International Energy Agenc


iea

IEEJ : March 2014 All Right Reserved

Sharp Declines in Costs Needed

Actions spanning across technologies and applications

IEEJ : March 2014 All Right Reserved

International Energy Agency

This roadmap reco	This roadmap recommends the following actions:							
Address data challenges for	Create an accessible global dataset of energy storage technology project overviews, including information on system specifications, cost and performance with contextual details.	Concentrated effort in the short term (2014-17).						
existing storage projects.	Quantify waste heat availability and opportunities, including details on waste heat quantity, quality, and location for both resources and potential demand.	Concentrated effort in the short term (2014-17).						
Address data challenges for use	Build a comprehensive dataset of renewable generation production with high levels of granularity to allow for assessment across a wide range of energy storage technology applications throughout the year.	Concentrated effort in the short term (2014-20).						
in assessing future energy storage potential.	Assess global potential for energy storage deployment in the context of the ETP 2DS vision (technology-independent evaluation).	Longer-term effort (2020- 30) after compilation of necessary datasets.						
	Quantify distributed energy storage potential in buildings, e.g. domestic hot water heaters, commercial refrigeration centres.	Concentrated effort in the short term (2014-20).						
Establish internation research, monitor pr	2018							
Support research, de incorporate the use systems) to maximis location/application	Medium-term effort (2020-50).							

Policy and regulatory frameworks

International Energy Agency

iea

IEEJ : March 2014 All Right Reserved

This roadmap recommends that the following actions be taken:	Milestone
Eliminate price distortions and increase price transparency for power generation and heat production, e.g. time-of-use pricing schemes, pay-for-services (heating, cooling, quick response, etc.) models.	2020
Enable benefits-stacking for energy storage systems.	2020
Government support of energy storage use in off-grid and remote communities.	2025
Support of the rapid retrofit of existing energy storage facilities to increase efficiency and flexibility, where these retrofits appear warranted.	2030
Inclusion of energy storage technologies as options for supplying energy and power services, and support for their continued development through government-funded R&D programmes.	2030

Roadmap Key Findings

- Storage can support energy system decarbonisation
- Some technologies already competitive, others (particularly electricity storage) still too expensive
- Additional R&D still needed to reduce costs
- Optimal role for storage varies widely across regions
- Power markets are ill-equipped to compensate storage for suite of services they can provide
- Thermal energy storage systems could make better use of wasted heat

Key actions over the next 10 years

Retrofit existing storage facilities

Energy Age

IEEJ : March 2014 All Right Reserved

- Develop markets and regulatory environments that enable accelerated deployment i.e benefitsstacking
- Support targeted demonstration projects and R&D
- Establish a comprehensive set of international standards
- Establish international and national data cooperation
- Complete regional assessments to quantify the value of storage in specific regions and energy markets

DOWNLOAD THE ROADMAP AND ANNEXES AT:

http://www.iea.org/publications/freepublications /publication/name,36573,en.html

FOR ADDITIONAL INFORMATION CONTACT:

TechnologyRoadmapsContact@iea.org

Contact : report@tky.ieej.or.jp © OECD/IEA 2014