

PROSPECTS OF ENERGY EFFICIENCY IN ASEAN AND ASIA - ASIA/WORLD ENERGY OUTLOOK 2013

Think Tank Roundtable A
Singapore International Energy Week
31st October 2013, Singapore

The Institute of Energy Economics, Japan Yukari Yamashita

Asia/World Energy Outlook 2013

—How to Interpret Changes Induced by Shale Revolution —

Introduction

- Why Energy Efficiency matters?
- Results from IEEJ's Asia/ World Energy Outlook 2013
- What are Expected of Energy Efficiency?
- Way forward

OECD avoided 60% of energy increase by Energy Saving (2005 estimates, IEA Report to G8 Summit in Toyako)

IEA, "Worldwide Trends in Energy Use and Efficiency" (2008)

Energy Saving of OECD Countries Slowed Down in late 1980's

Nuclear Plants' Restart in FY2013 still Unknown

Fiscal 2013

Weakness of Japan's Energy Security

All Rights reserved IEEJ

t

World Energy Demand Will Grow

Reference

Source: IEEJ (Asia/World Energy Outlook 2013)

"Energy Mix" Debate in Japan: Relevance to ROW

- 1) Comprehensive Perspective
 - No Perfect Energy exists for Japan without domestic energy resource
 - 3E+S : Energy Security + Efficiency + Environment + Safety
 - More Efficient Energy Use
 - Cleaner Use of Fossil Fuels + Safer Nuclear Energy Technology
 - Lower Cost Renewable Energy
 - Increasing use of electricity requires:
 - → <u>Well-balanced Mix</u> of 4 power gen technologies in addition to <u>enhanced energy efficiency</u> is essential.

"Nuclear": "Renewable": "Thermal Power": "Cogeneration"

- 2) Long-term Perspective
- 3) International Perspective
- → Japan's Energy Mix Debate has a relevance to the Rest of the World

Some Results from Asia/World Energy Outlook 2013

How to Interpret Changes Induced by Shale Revolution

English version will also become available soon!

1: Energy Demand in Asia Will Continue to Grow

Reference

Outlook for Energy Demand by Region

So is the case for the other regions!

Source: IEEJ (Asia/World Energy Outlook 2013)

2: Fossil Fuels (Oil, Coal, Gas) Will Remain Key Energy Reference Adv. Tech.

3: Robust Increase of Electricity

Reference

Outlook for Electricity Demand (ROW)

7 PWh 6 5 Oceania 5 Africa 2 Latin America 0 1971 1980 1990 2000 2011 2020 2030 2040

Outlook for Electricity Demand by Region

4: Facing Higher Gas Prices

Comparison of Regional Natural Gas Prices

(Source) US/DOE study, World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States, APRIL 2011, prepared by Advanced Resources International (ARI) for the United States' Energy Information Administration (EIA).

All Rights reserved IEEJ

CO2 Emissions Reduction by Technology (World)

Reference Tech. Adv.

■ For 50% reduction of global CO2 emission, additional long-term measures are necessary and development of innovative technology is essential.

2. What about Shale Gas Revolution?

Production Trends of Big 3 for Oil & Gas

BP "Statistical Review of World Energy 2013"

Shale Revolution Will Change Supply Picture for Oil and Gas

2040 Production (Enhanced Unconventional Resource Case vs Reference Case

Crude oil and natural gas prices (2010-40)

What Can be Expected IF Things Go Well for Unconventional Resources?

Gas will replace Coal, Oil and Others

Primary Energy Consumption Difference in 2040 (Enhanced Unconventional Resource Case vs Reference Case)

Oil and Gas Supply Picture will Change

Importers Will Benefit From Lower Prices

注: レファレンスケースから開発促進ケースへの移行による影響分

CO₂ Emission from Energy Use will not Change

- 2040年の排出はレファレンスケース比で世界0.1%減とほぼ変わらず。石炭代替効果が効くアジアは1.1%減と若干減少。
- 天然ガスへのシフト(燃料転換)が排出減に寄与する一方で、エネルギー価格の低下による省エネルギー、 原子力、再生可能エネルギーの停滞が排出増に寄与。 23

Energy Efficiency Remains Key to Energy Policy

2. What are Expected of Energy Efficiency and Conservation (EE&G)?

New Challenges for Japan

- ONew EE technology R&D for new social infrastructure and systems
- ODevelopment of EE policies and tools and information/ best practice sharing, technology transfer and international collaboration.

OEE achievement as a system

- Smart Grid, Smart Energy Network, Zero Energy Building (ZEB), EE and renewable energy technology imbedded building materials, motor system, electric vehicles, fuel cell vehicles and power/hydrogen SS infrastructure, eco-town/city...
- OImportance of Inter-Ministry collaboration, Public-Private Partnership, foundation of Consortium of industries and collaboration among them

Challenges Common with ROW

- Olncrease in power usage to be addressed by ITC
 - ⇒ HEMS, BEMS, Energy Management, Smart Meters
- OCombined usage of both **EE** and **non-fossil energy** to achieve Zero Emission options (e.g. ZEB)
- OActive employment of reuse, recycle, natural light & heat (passive E)
- Integrated policy challenges to be addressed
 - Environment (air, water) issues, EE, energy poverty & aging society (in both developed & developing countries), sustainable growth and creation of new employment.

The Latest Change in Japan's EE Act (2013 May)

- Inclusion of building materials (insulation & windows) into
 "Top Runner Program" → Wider coverage
- "Peak Shift" as additional means to appeal in annual reports on energy efficiency improvement and conservation.
 - → Introduction of Electricity peak demand cut/shift

Detailed rules for regulation are currently under discussion

Building EE Improvement: Passive House, Zero Energy Building

Refurbishment dramatically increased insulation to save heat usage in Frankfurt

Next Generation Energy Use:

Embodied into a Social System and Infrastructure (Smart Grid +)

- •Cross-cutting collaboration across industries and Ministries is required for strategic actions.
- Maximum utilization of renewable energy will be integrated.
- •IT driven energy savings based on data and information.

Common Advantage of Energy Efficiency (1)

- Readily available cost effective measures are applicable widely.
 - Governments are facing budget deficit with many complex social/economic issues while industries are facing increasing regulations/ higher costs/ lack of skilled labor, etc.
 - ⇒ Autonomous EE improvement benefits both.
 - •Resource-rich countries are also striving to save energy to retain their national resources. (e.g. Saudi Arabia, Russia, Brunei, South Africa and many others)

Common Advantage of Energy Efficiency (2)

- Energy shift from coal → oil → gas → electricity.
 - •Power generation needs to become more efficient while saving electricity usage and "peak shift " is effective to make the power intensive society affordable.

➤ Generating own power using renewable alone will not make houses/ buildings "net-zero energy/ emission" to realize Low Carbon Society. Energy efficiency improvement is essential.

Energy Saving Potential is Big for Growing Asia

★ Difference between the Reference and Advanced Technology Scenarios

> ※ 省エネポテンシャルは、2040年における技術進展ケースとレ ファレンスケースの一次エネルギー消費量の差。投資額は、 2040年までの両ケースにおける省エネ投資の差額。

Conclusion

Energy Efficiency & Conservation is a "powerful tool".

- The recent experience of <u>power shortage</u> in greater Tokyo Area proved that individual companies and factories could <u>move</u> fast and <u>adjust</u> daily operation with <u>flexibility</u> based on well informed knowledge of <u>daily</u> EM.
- ♦ More targeted policy making is required as potential for EE improvement gets exhausted. → SMEs & "peak cut"

Targeting sectors with <u>priorities</u> is a "Key".

- To exhaust the most of EE&C potential in the country with speed and volume.
- To aim at <u>co-benefits</u> from the EE&C policies and measures
 →job creation, new green industries, technological innovation, smart***.

Collaboration among the Ministries & industries across the country and cooperation in the world is "essential".

- Wider collaboration is required across the country and beyond industrial boundaries to further utilize EE potential.
- Sharing best practices domestically and internationally can speed up and strengthen the efforts globally.

Thank you very much for your attention!

For more advanced analyses, please contact IEEJ at

report@tky.ieej.or.jp