Clean Coal Technology Development in Hitachi

October 16, 2013

Makoto Nishimura
Engineering Division,
Thermal Power Systems Department,
Power Systems Company
Hitachi, Ltd.
Index

1. Hitachi Power Systems Company
2. Boiler Technology
3. Steam Turbine Technology
4. Air Quality Control System Technology
5. Future Clean Coal Technology
1. Hitachi Power Systems Company
Hitachi Global Portfolio

Revenues
98.0 billion US$ (FY2012)

- Power Systems
- Information & Telecommunication Systems
- Construction Machinery
- Electronics Systems & Equipment
- Social Infrastructure & Industrial Systems
- Electronics Systems & Equipment
- Financial Services
- Digital Media & Consumer Products
- High Functional Materials & Components
- Automotive Systems
- Others

© Hitachi, Ltd. 2013. All rights reserved.
Power Business in Hitachi

Thermal Power Business

- Coal-fired Thermal Power Plants
- Gas Turbines

Coal-fired Thermal Power Plants Major Equipment

Steam Turbines
Boilers
Air Quality Control System

Transmission & Distribution (T&D) Systems
Hydroelectric Power Generation Systems, Drive Systems, Smart Grids, Power Semiconductors, etc.

Nuclear Power Business

- Boiling Water Reactor Nuclear Power Plants (ABWR・ESBWR)
- Preventive Maintenance, Nuclear Fuel Cycle, etc.

Nuclear Power Business Major Equipment

Transmission & Distribution, Renewable Energy and Other Businesses

Particle beam therapy systems
Wind Power Generation Systems
Photovoltaic Power Generation Systems

FY2012 Consolidated Revenues 9.0 billion US$ 60% 20% 20%
Total Power System Technology

Integrated supply of BTG + AQCS ⇒ Optimize entire plants

<table>
<thead>
<tr>
<th>Boilers (B)</th>
<th>Turbines (T)</th>
<th>Generators (G)</th>
<th>Air Quality Control System (AQCS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DeNOx Systems</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

- **Steam Turbines and Generators (TG)**
 - Turbines and Generators
 - Low-pressure Turbines

- **Boilers (B)**
 - DeSOx (Spray Type)
 - DeNOx Catalyst

- **Air Quality Control System (AQCS)**
Accelerate Business Development

New Markets
- Expand in emerging markets, particularly in Asia
- Coal-fired systems expand in emerging markets, and gas-fired systems in all regions

Estimation on Thermal Power Generation Capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>3,310</td>
</tr>
<tr>
<td>2020</td>
<td>4,401</td>
</tr>
<tr>
<td>2030</td>
<td>5,142</td>
</tr>
<tr>
<td>2035</td>
<td>5,628</td>
</tr>
</tbody>
</table>

Source: IEA WEO 2011

World Electricity Generation by Energy Source

- Steady growth in coal-fired thermal power plants
- Increasing demand for AQCS due to national regulation
- Accelerated adoption of renewable energy
- Expansion of power transmission and distribution market

(National kWh)
2. Boiler Technology
Total Installed Capacity: 107 GW (Japan: 46 GW) (As of 2012)
Latest Boiler Supply

Tokyo Electric Power Co., Ltd (Japan)
Hitachi Naka Unit 1 and 2

- **Boiler Type**: Once-Through, Benson
- **Generator Output**: 1,000 MW
- **Main Steam Flow**: 2,870 t/h
- **Steam Conditions**: 25.4MPa / 604°C / 602°C
- **Commercial Operation**: 2003 (#1), 2013 (#2)

MidAmerican Energy Company (USA)
Walter Scott Jr. Energy Center Unit 4

- **Boiler Type**: Once-Through, Benson
- **Generator Output**: 853 MW
- **Main Steam Flow**: 2,530 t/h
- **Steam Conditions**: 26.2MPa / 570°C / 595°C
- **Commercial Operation**: 2007
4. Steam Turbine Technology
Steam Turbine Supply Record

Total Installed Capacity: 110 GW (Japan: 44 GW) (As of 2012)
Latest Steam Turbine Supply

J-Power Co., Ltd. (Japan)
Isogo unit No.2

<table>
<thead>
<tr>
<th>Turbine Type :</th>
<th>Tandem Compound Double Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator Output :</td>
<td>600 MW</td>
</tr>
<tr>
<td>Revolution:</td>
<td>3,000rpm</td>
</tr>
<tr>
<td>Steam Conditions :</td>
<td>25MPa/ 600°C / 620°C</td>
</tr>
<tr>
<td>Commercial Operation :</td>
<td>2009</td>
</tr>
</tbody>
</table>

Netherland
Rotterdam unit No.1

<table>
<thead>
<tr>
<th>Turbine Type :</th>
<th>Tandem Compound Four Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator Output :</td>
<td>790 MW</td>
</tr>
<tr>
<td>Revolution:</td>
<td>3,000rpm</td>
</tr>
<tr>
<td>Steam Conditions :</td>
<td>26.3MPa/ 600°C / 620°C</td>
</tr>
<tr>
<td>Commercial Operation :</td>
<td>2013</td>
</tr>
</tbody>
</table>
Latest Steam Turbine Supply in Philippine

SMC Davao Power Plant Project

- **Owner**: San Miguel Consolidated Power Corp.
- **Location**: Davao in Mindanao, Philippine
- **Gross Output**: 150MW x 2 units
- **Turbine Type**: Single Flow Exhaust Reheat Condensing Turbine
- **Steam Conditions**: 12.3MPa/538°C / 538°C
- **Commercial Operation**: 2015, 2016

SMC Limay Power Plant Project

- **Owner**: SMC Consolidated Power Corp.
- **Location**: Bataan in Luzon, Philippine
- **Gross Output**: 150MW x 2 units
- **Turbine Type**: Single Flow Exhaust Reheat Condensing Turbine
- **Steam Conditions**: 12.3MPa/538°C / 538°C
- **Commercial Operation**: 2016
3. Air Quality Control System Technology
Air Quality Control System

- Boiler
- DeNOx (SCR)
- ESP
- DeSOx (FGD)

Hitachi is one of a few AQCS suppliers for total system

SCR: Selective Catalytic Reduction
ESP: Electrostatic Precipitator
FGD: Flue Gas Desulfurization

(Layout for 1000MW coal fired plant in Japan)
5. Future Clean Coal Technology
Roadmap of Clean Coal Technology

- Hitachi has been developing key technologies of clean coal system
 - Advanced USC (Ultra Super Critical)
 - CCS (CO₂ Capture and Storage)
 - IGCC (Integrated coal Gasification Combined Cycle)

Road of Development

2010
- Capture Ready
- Pilot Testing Plant

2015
- Partial Reduction
- Demonstration Plant

2020
- Full Reduction
- Commercial Plant

2025
- Ultimately-Clean Plant

2030
- Advanced USC
 - Efficiency of 46% (HHV)
- Oxy-Combustion
 - Reduce all of CO₂ Emission
- CO₂ Scrubbing
 - Reduce CO₂ Emission by half
- Advanced USC + CCS
 - High Efficiency
 - Zero Emission
- IGCC + CCS
 - Ultimately Clean Coal Technology
The efficiency of the coal fired power plant has been improved by making the steam condition a high temperature.

Advanced USC (Ultra Super Critical)

Next Generation Development Goal

- Net Efficiency
 - 46-48%

Average Efficiency in the World: 32%

State of the Art: 600°C/620°C

USC: 593°C

Advanced USC: 700°C

Near future

Best Practice

Development matter
- Material (Ni-base Alloy)
- Design
- Reliability
Development of Material for Advanced USC

USC141: High Strength Ni-base Alloys (Upper Limit: 720°C)

Application Use; Turbine Moving Blade, Bucket Bolts, Boiler Tube

FENIX700: Fe-Ni-base Alloys for Low Price, Large-scale Production (Upper Limit: 700°C)

12.5 ton Stead Ingot for Turbine Rotor

Application Use; Turbine Rotor

Narrow Gap Hot Wire Technology

Sketch map of HST equipment

Narrow Gap Hot Wire Techinology
Reduction of CO₂ Emission

【Calculation value based on our experiences】

*HHV, Net output base

<table>
<thead>
<tr>
<th></th>
<th>Pressure (MPa)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub: Sub-Critical</td>
<td>16.7</td>
<td>538/538</td>
</tr>
<tr>
<td>SC: Super Critical</td>
<td>24.1</td>
<td>566/566</td>
</tr>
<tr>
<td>USC: Ultra Super Critical</td>
<td>25.0</td>
<td>600/600</td>
</tr>
</tbody>
</table>
Accelerate Commercialization

2005 2010 2015 2020 2025

Pilot Test → Demonstration Test → Commercialization

Joint Research by Power Companies (To 1995)
Test with Organizations Overseas (2012)
CCTF Project

Conceptual Design of CO₂ Scrubbing (800MW class)

NCCC Test Result

Hitachi has participated in SaskPower CCS Project

- Hitachi and SaskPower*4 have collaborated to design and built Carbon Capture Test Facility (CCTF, 120 t-CO₂/day) at Shand Power Station.
- Hitachi supplies the newly-designed steam turbine and generator for Boundary Dam CCS Project. (3000 t-CO₂/day)

Boundary Dam Power Station

*1 NCCC: National Carbon Capture Center *2 MEA: Standard Solvent
*3 H3-1: Hitachi Solvent *4 SaskPower: Utility company in Saskatchewan, Canada
CCS (CO₂ Capture and Storage) - Oxy-fuel Combustion

Fundamental Study
- Laboratory Test
- Basic Combustion Test (0.4MWth Test Facility)

Verification Study
- Large Scale Combustion Test (4MWth Test Facility)
- Total System Check (1.5MWth Test Facility)

Demonstration Test
- Feasibility Study
 - Trial Design of Actual Plant (500MW class)
 - Cost Evaluation

0.4MWth Test Facility

*30MWth Test Plant *1*

Conceptual Design of Oxy-combustion (500MW class)

1: Schwarze Pumpe (Vattenfall):
Hitachi has conducted burner combustion test.
IGCC (Integrated coal Gasification Combined Cycle)

1st Stage: IGCC (Oxygen-brown)

- Fuel Gas (CO, H₂)
- O₂
- Coal

- Gas Turbine
- Steam Turbine
- HRSG*
- Gasifier

- Shift Reactor (※)
 - CO + H₂O → CO₂ + H₂

2nd Stage: CO₂ Capture

- Fuel Cell
- H₂

3rd Stage: IGCC/IGFC + CO₂ Capture

- Shift Reactor (※)
- CO₂, H₂
- CO₂ Capture

※HRSG: Heat Recovery Steam Generator

© Hitachi, Ltd. 2013. All rights reserved.
IGCC Pilot Plant (Nakoso, Fukushima)

<table>
<thead>
<tr>
<th>Gasifier</th>
<th>O$_2$-blown Entrained Flow Gasifier (2-stage Spiral Flow Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Feed Rate</td>
<td>150 t/day</td>
</tr>
<tr>
<td>Gasification Pressure</td>
<td>2.5 MPa</td>
</tr>
<tr>
<td>Syngas Volume</td>
<td>14,800m3/N/h</td>
</tr>
<tr>
<td>Gas Clean-up</td>
<td>Absorption with MDEA</td>
</tr>
<tr>
<td>Sulfur Recovery</td>
<td>Limestone-Gypsum</td>
</tr>
<tr>
<td>CO$_2$ Capture Unit Capacity</td>
<td>1,000m3/N/h</td>
</tr>
<tr>
<td>GT Output</td>
<td>8,000kW</td>
</tr>
</tbody>
</table>

Other units:
- Air Separation Unit
- Gasifier and Char Recycle Unit
- Gas Clean-up Unit
- Sulfur Recovery Unit
- Gas Turbine
- CO$_2$ Capture Unit (Sweet Shift + Chemical Absorption)
IGCC Demonstration Plant (Osaki Kami-jima, Hiroshima)

Early Commercialization with Accelerated Demonstration Test

<table>
<thead>
<tr>
<th>2012</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCC (Oxygen-blown)</td>
<td>Carbon Capture</td>
<td>IGCC (Oxygen-blown)/IGFC + Carbon Capture</td>
<td>Osaki CoolGen Project (Ministry of Economy, Trade and Industry Subsidy Project)</td>
</tr>
<tr>
<td>IGCC (Oxygen-blown) Commercial System</td>
<td>IGCC (Oxygen-blown) + CCS Commercial System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Osaki CoolGen Project

- Gasifier: 1,100 tons/day
- Combined cycle: 170 MW class

Stared the Construction in March 2013

Demonstration Test Area
Cooperation with Integrated Thermal Power Systems Company

MH Power Systems
(Joint Stock Company with Mitsubishi Heavy Industries)
- Gas turbines
- Steam turbines & Generators
- Boilers and AQCS
- Control equipment
- Maintenance services

Hitachi Group

Power Systems Company
- Nuclear power systems
- Power transmission and distribution
- Electric control systems
- Renewable energy

Hitachi Capital, Ltd
- Finance
- Leasing

Hitachi Transport System, Ltd
- Logistics

Hitachi Power Solutions, Ltd.
- Monitoring
- Facility diagnosis

Information & Telecommunication Systems Company
- Big Data utilization
- Cloud computing

Infrastructure Systems Company
- Compressors
- Inverters
- Demand Side Management (DSM)
- Smart cities

T&D: Transmission & Distribution
DSM: Demand Side Management
© Hitachi, Ltd. 2013. All rights reserved.