March 29, 2012 2nd Transport Future Workshop Keidanren Kaikan in Tokyo, Japan

Analysis of CO2 Emissions to Consider Future Technologies and Integrated Approaches in the Road Transport Sector

Shuichi KANARI
Japan Automobile Research Institute
Shigeru Suehiro
The Institute of Energy Economics, Japan

- 1. Introduction
- 2. Outline of CEAMAT*

 (Model Structure, Analysis Target)
- 3. Input Data

(Demand of Road Transport Sector, Automotive Technologies)

4. Result of Scenario Analysis

- 4.1 Passenger Car Sector
- 4.2 Truck Sector
- 4.3 Road Transport Sector
- 5. Reduction of CO2 Emissions with Integrated Approaches
- 6. Conclusion
- ※CEAMAT: Energy Analysis model for the long term in road the transport sector

- 1. Introduction
- 2. Outline of CEAMAT*

 (Model Structure, Analysis Target)
- 3. Input Data

(Demand of Road Transport Sector, Automotive Technologies)

4. Result of Scenario Analysis

- 4.1 Passenger Car Sector
- 4.2 Truck Sector
- 4.3 Road Transport Sector
- 5. Reduction of CO2 Emissions with Integrated Approaches
- 6. Conclusion

Introduction

Background

- > Increasing concerns about energy security and global climate change
- ➤ Necessity of energy saving, fuel diversification and reduction of greenhouse gas
- ➤ Not enough evaluation of long term technical scenarios in the road transport sector
 - Not considering cost-effectiveness and realizing fuel economy improvement technologies
 - ◆ Restriction of analysis vehicle target (e.g. only Passenger cars)

Purpose

Development of long term CO2 reduction scenarios to consider future automotive technologies and integrated approaches in the Japanese automotive sector.

- 1. Construction of a database with demand of the road transport sector and future automotive technologies
- 2. Development of cost-effectiveness tools for future automotive technologies
- 3. Scenario analysis
- 4. Analysis of CO2 reduction with integrated approaches

- 1. Introduction
- 2. Outline of CEAMAT*

 (Model Structure, Analysis Target)
- 3. Input Data

(Demand of Road Transport Sector, Automotive Technologies)

4. Result of Scenario Analysis

- 4.1 Passenger Car Sector
- 4.2 Truck Sector
- 4.3 Road Transport Sector
- 5. Reduction of CO2 Emissions with Integrated Approaches
- 6. Conclusion

What is CEAMAT?

- ➤ CEAMAT is an analysis energy model for the road transport sector for the long-term (-2050)
 - ◆The IEEJ 2050 model is an energy analysis model for all sectors worldwide, developed by The Institute of Energy Economics, JAPAN
 - CEAMAT links with the IEEJ2050 model

Target Vehicle Type and Class

> Vehicle section, focus on the Japanese automotive market

Passenger car	Truck	Bus	
Middle	Large	Large	
(> 2000cc)	(GVW > 8t)	(GVW > 8t)	
Small	Middle	Small	
(≦ 2000cc)	$(3.5t < GVW \le 8t)$	$(GVW \le 8t)$	
Mini	Small		
(≦ 660cc)	(GVW ≦3.5t)		
	Mini		
	(≦ 660cc)		

Passenger car

Truck

Bus

Target Automotive Technologies

Technology		Fuel path	
GICEV	Gasoline Internal Combustion Engine Vehicle	Gasoline/Ethanol	
GICEHEV	Gasoline Internal Combustion Engine Hybrid Vehicle		
DICEV	Diesel Internal Combustion Engine Vehicle	Diesel oil/BDF	
DICEHEV	Diesel Internal Combustion Engine Hybrid Vehicle		
HICEV	Hydrogen Internal Combustion Engine Vehicle	Hydrogen/Gasoline	
HICEHEV	Hydrogen Internal Combustion Engine Hybrid Vehicle		
CNGV	Compressed Natural Gas Vehicle	CNG	
DMEV	Dimethylether Vehicle	DME	
LPGV	Liquefied Petroleum Gas Vehicle	LPG	
EV	Electric Vehicle	Electricity	
HFCV	Hydrogen Fuel Cell Vehicle	Hydrogen	
GICEPHEV	Gasoline Internal Combustion Engine Plug-in Hybrid Vehicle	Gasoline/Electricity	
DICEPHEV	Diesel Internal Combustion Engine Plug-in Hybrid Vehicle	Diesel oil/Electricity	
HFCPHEV	HFCPHEV Hydrogen Fuel Cell Plug-in Hybrid Vehicle		

ΕV

CNGV

DICEV(mixed Bio-diesel)

HFCV

Model Structure for New Vehicles

Related Probability of Technology Choice and Driving Distance (e.g. GICEV vs. GHEV)

>Probability of technology choice (Pr) is estimated by total cost in the depreciation period and Line-up number for each distance.

$$\Pr_{k} = \frac{M_{k}^{\theta 1} \cdot \exp(\theta_{0} \cdot C_{Tk})}{\sum_{k' \in K} M_{k'}^{\theta 1} \cdot \exp(\theta_{0} \cdot C_{Tk'})}$$

$$K: \text{ Technology section}$$

$$K: \text{ Assembly technology section}$$

$$C_{Tk}: \text{ Total cost in usage period}$$

$$M_{k}: \text{ Line-up number}$$

$$\theta_{0} = \theta_{0} : \text{ Parameter } (\theta_{0} = -6.46, \theta_{0})$$

k: Technology section

 θ_0 , θ_1 : Parameter (θ_0 =-6.46, θ_1 =0.94)

Annual driving distance (km/year)

- 1. Introduction
- 2. Outline of CEAMAT*

 (Model Structure, Analysis Target)
- 3. Input Data

(Demand of Road Transport Sector, Automotive Technologies)

4. Result of Scenario Analysis

- 4.1 Passenger Car Sector
- 4.2 Truck Sector
- 4.3 Road Transport Sector
- 5. Reduction of CO2 Emissions with Integrated Approaches
- 6. Conclusion

Demand of the Transport Sector and Fuel Price in the IEEJ2050 Model

Efficiency and Price of Future Technologies in ICEV

- ➤ Base vehicle: Standard vehicles in the year 2000
- ➤ Choice of good cost-effectiveness technology combinations
- ➤ Determination of approximate curve to use good cost-effectiveness technology combinations

Groping	Improving FE Technology	Passenger car	Truck
Engine	Gasoline Direct Injection (Stoichimetric)	0	
	Gasoline HCCI	0	
	Cam Phasing	0	
	Engine Downsizing	0	0
	EGR	0	00
	Improved Engine Friction	0	0
	Improved firing chamber	0	0
	Other normal advance technologies	0	0
	Turbo Compound		0
	Variable Compression Ratio		0000
	Valuable Valve Timing	0	0
	2 stages Turbo		0
	After treatment Device		0
Transmission	CVT	0	
	5AT	0	
	6AT	0	
	Multiple Transmission		0
	High Differential Gears Ratio		0
	Direct-connected maximum gear		0
	Dual Clutch		0
	AMT	0	0
Accessories	Electric Power Steering	0	
	Improved Alternator	0	
	Electric Accessories	0	0

Scenario of Future Technological Factors with EV and HFCV

- ➤ Price and efficiency of battery and fuel cell systems in the future are based on government and private sector reports and interviews.
- Future scenarios are efficiency improvement and a lower price, considering advance technologies and mass production.
- Truck's part prices are higher than part of passenger car prices, because system accessories are larger and more expensive.

New Vehicle Energy Economy and Price (e.g. Small Passenger car)

- All technologies improved energy economy, considering advance technology factors such as ICE technologies, battery and fuel cost.
- Improvement technologies price of improving are added to ICEV's vehicle price.
- ➤ Other new automobiles come down in price to reflect mass production of technology factors (Battery and fuel cell system, etc.).

New Vehicle Energy Economy and Price (e.g. Large Truck)

- Trend of fuel economy and vehicle price is shown, same as small passenger cars
- ➤ All technologies improved energy economy, considering advance technology factors such as ICE technologies, battery and fuel cost.
- ➤ Improvement technologies price of improving are added to ICEV's vehicle price.
- ➤ Other new automobiles come down in price to reflect mass production of technology factors (Battery and fuel cell system, etc.).

- 1. Introduction
- 2. Outline of CEAMAT*

 (Model Structure, Analysis Target)
- 3. Input Data

(Demand of Road Transport Sector, Automotive Technologies)

4. Result of Scenario Analysis

- 4.1 Passenger Car Sector
- 4.2 Truck Sector
- 4.3 Road Transport Sector
- 5. Reduction of CO2 Emissions with Integrated Approaches
- 6. Conclusion

Number of New Vehicles and Vehicles in Use (Passenger Car)

Fuel Economy of Vehicles in Use and TtW CO₂ Emissions in the Passenger Car Sector

➤CO2 emissions in 2050: -55% (Based on 2005)

Number of New Vehicles and Vehicles in Use (Truck)

- ➤ Number of new vehicles (GVW: 3.5t over)
 - ◆Share of next generation vehicles: 56%(2050)
- Small and mini trucks (GVW: 3.5t and under, trucks) have a similar trend to passenger cars.

- ➤ Number of vehicles in use (GVW : 3.5t over)
 - ◆Share of next generation vehicles: 48%(2050)
- Small and mini trucks (GVW: 3.5t and under, trucks) have a similar trend to passenger cars.

Fuel Economy of Vehicles in Use and TtW CO2 Emissions (Truck Sector)

➤CO2 emissions in 2050 -36% (Based on 2005)

CO2 Emissions (Road Transport Sector)

➤CO2 emissions in 2050:
-47%(Based on 2005)

- 1. Introduction
- 2. Outline of CEAMAT*

 (Model Structure, Analysis Target)
- 3. Input Data

(Demand of Road Transport Sector, Automotive Technologies)

4. Result of Scenario Analysis

- 4.1 Passenger Car Sector
- 4.2 Truck Sector
- 4.3 Road Transport Sector
- 5. Reduction of CO2 Emissions with Integrated Approaches
- 6. Conclusion

Analysis Process of CO2 Reduction for Eco-driving

Analysis Process of CO2 Reduction to Improving Traffic Flow

CO2 Reduction for Integrated Approaches (Road Transport Sector)

- Technological composition is assumed to be the same as the Baseline case, that is without integrated approach.
- ➤ CO2 Reduction in 2050: 55% based on 2005 (Baseline case: 47%)

- 1. Introduction
- 2. Outline of CEAMAT*

 (Model Structure, Analysis Target)
- 3. Input Data

(Demand of Road Transport Sector, Automotive Technologies)

4. Result of Scenario Analysis

- 4.1 Passenger Car Sector
- 4.2 Truck Sector
- 4.3 Road Transport Sector
- 5. Reduction of CO2 Emissions with Integrated Approaches
- 6. Conclusion

Conclusion

A cost-effectiveness analysis tool including an automotive database with advanced technologies were developed, and future scenarios were analyzed. In addition, integrated approaches were researched and calculated about reducing CO2 emission potential.

- 1. From the result of this scenario analysis, CO2 reduction potential of the road transport sector with next generation automobiles is calculated as 47% (based on 2005) in 2050.
- 2. CO2 reduction potential from next generation automobiles and integrated approaches (Improving traffic flow and Eco-driving) is calculated as 55% (based on 2005) in 2050.

From the result of CO2 potential from improving traffic flow and ecodriving, we've shown it is necessary to popularize next generation automobiles and integrated approaches.

Thank you for your attention!