International Energy Agency

Deploying Renewables 2011

Best and Future Policy Practice

Paolo Frankl
Head Renewable Energy Division
International Energy Agency

Institute of Energy Economics, Japan (IEEJ) Energy Seminar
Tokyo, 7 March 2012

- Analyses market and policy trends for electricity, heat and transport
- Investigates the strategic drivers for RE deployment
- Benchmarks the impact and cost-effectiveness of economic support policies
- Provides best practice policy principles
- Covers 56 countries and all world regions
- Book and 3 supporting information papers

Strong Growth in RE Electricity ... and shift to Asia

	Wind	Bioenergy	Solar PV	Hydro	other
Generation 2010 [TWh]	338	296	31	3503	74
CAGR 2005- 2010 [%]	26.5%	8.8%	50.8%	3.1%	4.6%

Costs are Reducing

- Hydro and some biomass and geothermal already cost-competitive
- Additional
 technologies getting
 competitive in a
 broader set of
 circumstances
- Opens up new deployment opportunities

Data from Breyer and Gerlach, 2010

Policies could radically alter the long-term energy outlook

World primary energy demand by scenario

In the New Policies Scenario, demand increases by 40% between 2009 & 2035

Low-carbon power technologies come of age

Global installed power generation capacity in the New Policies Scenario

Renewables & nuclear power account for more than half of all the new capacity added worldwide through to 2035

Efficiency gains can contribute most to emissions reductions

World energy-related CO₂ emissions abatement in the 450 Scenario relative to the New Policies Scenario

Energy efficiency measures – driven by strong policy action across all sectors – account for 50% of the cumulative CO₂ abatement over the Outlook period

Moving towards cleaner forms of electricity generation

WORLD 2
ENERGY 1
OUTLOOK 1

Electricity generation by selected low carbon technology & share of electricity generation by scenario, 2009 and 2035

Low-carbon generation increases 2.5 times between 2009 & 2035 in the New Policies Scenario & almost quadruples in the 450 Scenario

Less nuclear means more of everything else

Power generation by fuel in the New Policies Scenario and Low Nuclear Case

The biggest chunk of the lost nuclear generation is replaced by power generation from coal, leading to a 6% increase in CO₂ emissions in the power sector

The majority of energy subsidies still go to fossil fuels

World subsidies to fossil fuels consumption & renewable energy

Fossil-fuels subsidies amounted to \$409 billion in 2010 – down from the peak of \$550 billion in 2008 but still much larger than subsidies to renewables, which reached \$66 billion in 2010

The overall value of subsidies to renewables is set to rise

Global subsidies to renewables-based electricity and biofuels

Renewable subsidies of \$66 billion in 2010 (compared with \$409 billion for fossil fuels), need to climb to \$250 billion in 2035 as rising deployment outweighs improved competitiveness

The door to 2° C is closing, but will we be "locked-in"?

World energy-related CO₂ emissions in the Current Policies and 450 Scenarios and from locked-in infrastructure in 2010 and with delay

Without further action, <u>by 2017</u> all CO_2 emissions permitted in the 450 Scenario will be "locked-in" by existing power plants, factories, buildings, etc.

Measuring Policy Impact - Methodology

Are Policies Successfully Encouraging Deployment? Example: Onshore Wind

Are payments for Generators in a Reasonable Range? Ex: Onshore Wind 2009

Impact vs Cost-Effectiveness

Example: Onshore Wind

Emerging Policy Challenges - PV

Cumulative global PV capacity

Sources: IEA, EA PVPS, EPIA

- Concentrated booming PV growth raises policy cost concerns in several EU countries
- Policies are not adapting quickly enough
- However, pressure will reduce as new markets emerge

Adjust Tariffs – On time & Often

Key point: Gap between incentives and costs and large, one-off tariff decreases can trigger "sales rush"

Importance of var-RE

WEO 450 Scenario electricity projections – EU

Emerging challenges: grid integration

Variability is not new, but it does get bigger

Flexibility is key

There are 4 flexible resources

Renewable 2

Deploying

Dispatchable power plants

Demand side Response (via smart grid)

Energy storage facilities

Interconnection with adjacent markets

A biomass-fired power plant

Industrial

residential

A pumped hydro facility

Scandinavian interconnections

© OECD/IEA, 2011

Grid integration of var-RE

Snapshot of present penetration potentials

Best-Practice Policy Principles

- Predictable RE policy framework, integrated into overall energy strategy
- Portfolio of incentives based on technology and market maturity
- Dynamic policy approach based on monitoring of national and global market trends
- Tackle non-economic barriers
- Address system integration issues

Deployment

Policy Priorities: Changing Over Time

Inception

- Clear RE strategy and targets
- Attractive support
- Set up regulatory framework

Take-off

- Predictable and rapidly adaptive incentives
- Focus on noneconomic barriers
- Manage total support costs

Consolidation

- System integration and transformation
- Market design and expose RE to competition
- Public acceptance

Time

Market Expansion Opportunities

Conclusions

- Policies have started delivering in terms of RE deployment and cost reduction
- RE getting competitive in a broader set of circumstances
- However major economic and non-economic barriers persist and sustained policy effort is still needed
- Deploying Renewables identifies best-practice policy principles
 - Cost-effective, dynamic, integrated approach
 - Aims to help sharing best practice internationally so that countries can learn from each other

Links

www.iea.org

- **RE Publications**
 - <u>Home</u> > <u>Publications</u> > Search per Topic: Renewables
- **RE Policy Database**

http://renewables.iea.org

Contacts

paolo.frankl@iea.org renewables@iea.org