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Rising VRE Penetration and the Changing Supply-Demal

Balance in the Power System

® The IEEJ Outlook 2026 projects that under the Reference Scenario(REF), VRE power
generation will increase approximately fivefold from current levels to 2050, rising to
approximately sevenfold under the Advanced Technologies Scenario(ATS).

® As VRE scales toward decarbonization, the electricity supply-demand balance will shift
significantly — as already seen in regions with high solar penetration, where daytime and
nighttime conditions diverge sharply.

® Power systems must therefore be designed to manage VRE fluctuations through accurate
forecasting, flexible operation of power generation, storage deployment, and grid

reinforcement.
Gap Between Solar/Wind Output and Power Demand (Illustrative)
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Demand-side load adjustment (demand
response) can help flatten the electricity
load profile. 2
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VRE Deployment and the Evolution of Integration Costs

® When integrating a power source, additional system costs beyond its generation cost — known
as integration costs — are incurred. These include expenses for grid reinforcement and
storage.

® As VRE penetration rises, it is crucial to account for these growing integration costs and
assess the total system cost to achieve an optimal balance.

Illustrative image: Growth in VRE deployment vs. system cost trajectory
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Example of the Study on Integration Cost:

The Working Group on Power Generation Cost Verification (2025)

® As VRE penetration increases, curtailment and storage losses grow, while the capacity factor of
balancing plants declines — resulting in a much steeper rise in LCOE* for VRE compared with

nuclear and thermal power.

® The right-hand side figure decomposes the gap between generation cost (LCOE: Levelized Cost
of Energy) and adjusted LCOE (LCOEx), which incorporates part of the integration costs,
showing that charging/discharging losses and curtailment have the largest impact.

Comparison of Generation Cost vs. Adjusted Generation Cost
(including part of the integration costs)
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Overview of the IEEJ Technology Selection Model

(IEEJ-NE Model)

® Using the IEEJ-NE model, we analyze the least-cost technology mix for ASEAN under varying
levels of VRE deployment.

® The analysis assumes each country follows its NDC targets and evaluates VRE deployment and
integration costs through 2060.
e [EEJ-NE Model Framework
v Simulates annual power and hydrogen supply-demand on a time-step basis
v Calculates required capacity for power generation and storage
v Considers grid reinforcement and energy storage for power system balancing

Example of Power Supply-Demand (hourly) Required storage capacity estimated by area
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VRE Deployment and Changes in System Cost

In ASEAN, the least-cost VRE share in 2060 is estimated to be around 30% — used here as the
reference.

Increasing VRE beyond this reference reduces conventional generation capital and fuel costs,
but raises VRE installation costs and integration costs such as storage.

At 81% VRE, cumulative system cost rises by approximately USD 1.3 trillion over 2030-2060
compared with the reference.

Cumulative System Cost Change in ASEAN (2030-2060, vs. baseline)
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VRE Deployment and Country-Level System Cost Impact

® The change in system cost from higher VRE deployment varies significantly by
country.

® Indonesia, Vietnam, and Thailand — with large populations and economies — see the
largest cost increases, including VRE capital costs.

Change in System Cost by Country in 2060 (vs. baseline)
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Summary

® As variable renewable energy (VRE) expands toward decarbonization, the future
supply-demand balance of electricity will change significantly.

® In the decarbonization era, integration costs are increasingly seen as a key metric
for evaluating energy costs, and a growing number of studies and analyses are
focusing on them.

® This report analyzes VRE deployment and integration costs in ASEAN through 2060.

® When VRE is increased beyond the reference level, capital and fuel costs for
conventional power are reduced — but VRE installation and integration costs rise,
resulting in a net increase in total system cost.

® The cost and additional deployment potential of VRE vary by country, making it
essential to pursue diverse and country-specific pathways to decarbonization.
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Appendix: Key Components of Integration Costs

(Typical Classification)

Category Detailed item

Cost of managing
forecast errors

Grid
reinforcement
costs

Grid-related
costs

Cost of supply-
demand mismatch /
adequacy

Cost of supply-

Profile
demand e .
: costs/utilization
mismatch / costs

Reduced capacity
factor of
dispatchable plants

adequacy

Increased cycling
and start-
up/shutdown costs

Description

Short-term balancing costs from
dispatchable plants responding to intra-day
VRE fluctuations (seconds—-minutes reserve).

Investment in transmission infrastructure
and congestion management (e.g.,
redispatch) due to geographical mismatch
between VRE generation and demand.

Backup capacity required due to the low
capacity value of VRE, especially during
peak demand (e.g., thermal, flexible
renewables, storage).

Higher unit cost of electricity when VRE
output exceeds demand and curtailment is
needed.

Increase in unit generation cost as
baseload and mid-merit thermal plants
operate fewer hours due to VRE.

Additional costs from more frequent and
unplanned ramping or cycling of
dispatchable power plants.

Considered in
various analyses

This study

The Working Group on
Power Generation Cost
Verification

This study.

The Working Group on
Power Generation Cost
Verification

The Working Group on
Power Generation Cost
Verification

The Working Group on
Power Generation Cost
Verification

Source: Author, based on Ueckerdt et al. (2013) and Matsuo (2021)
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