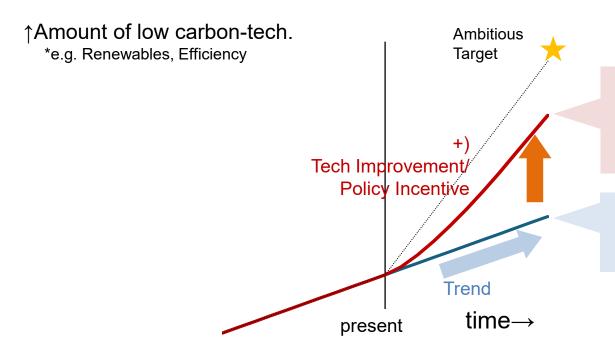


IEEJ Outlook 2026

Global Energy Supply and Demand Outlook to 2050

The Institute of Energy Economics, Japan (IEEJ)

Seiya Endo


Senior Economist, Energy Data and Modelling Center

What is IEEJ Outlook?

JAPAN

- Global long-term energy supply and demand projections to 2050.
- Two scenarios with different technology and policy development trajectories.
 - Both are "What if...?" based forecasts, not target-based backcasts("What must be done?").

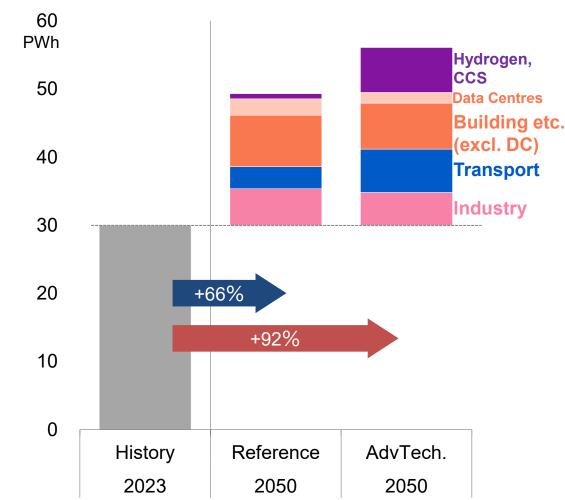
Scenarios

[Advanced Technologies] ("AdvTech.")

Maximum feasible efforts for energy security and climate goal.

[Reference]("Ref")
Continuation of historical trends.

Global Power Demand Surges


Historical Data Trend [Global]

- 2024 generation increased +4.0% from 2023*
 - accelerating from 10-year average (2.6%/year).

Outlook toward 2050

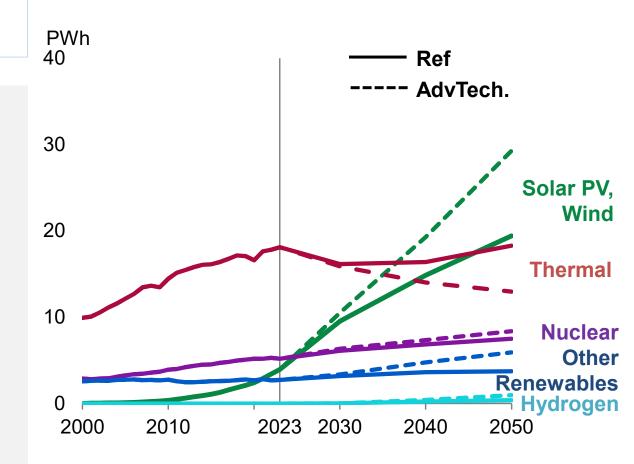
- Power generation strongly increases in both scenarios, mainly from;
- Reference: industrial sectors and residential heating/cooling.
- AdvTech.:
 (+) electrification in transport, hydrogen/CCS.
- Massive investments in grids and generation will be essential.

Required Generation Increase (World)

IEEJ © 2025

Global Generation Mix;

Growth centred on solar PV and wind

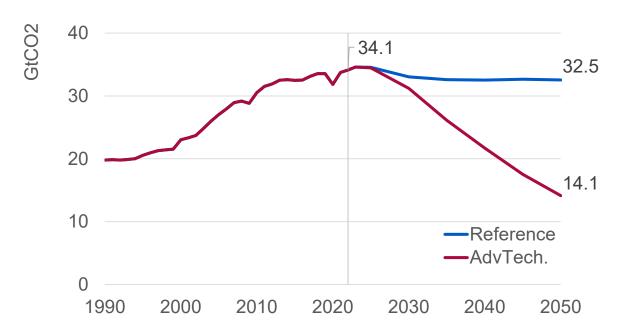

Historical Data Trend [Global]

- Solar PV generation increases at the highest pace between 2022-2024.*
- Wind power also grows, but the pace is slowing.

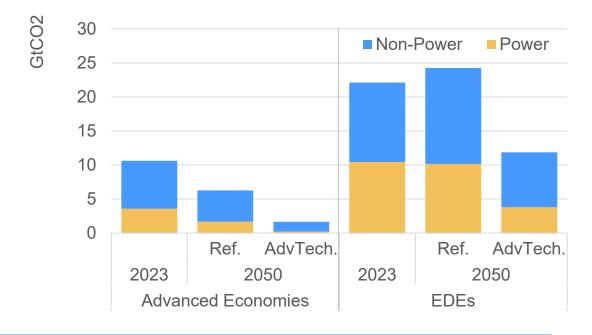
Outlook toward 2050

- **Ref.**: Solar and wind dominate expansion, but slow facing integration costs, land constraints.
- AdvTech.: mitigates these constraints by technology and policies.
- Other power sources (Thermal/ Nuclear/ Other Renew.) remain essential.

Generation by Source(Global)



CO₂ Emissions Pathways


JAPAN

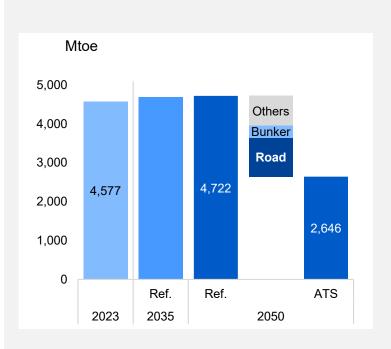
- Reference: Global emissions remain around current levels.
- AdvTech.: Reaching -59.3% vs 2023.
 - Power sector reduce emission first. Non-power sectors lag, especially in emerging economies.

CO₂ Emission*(World)

CO₂ Emission**(Regional, Sectoral)

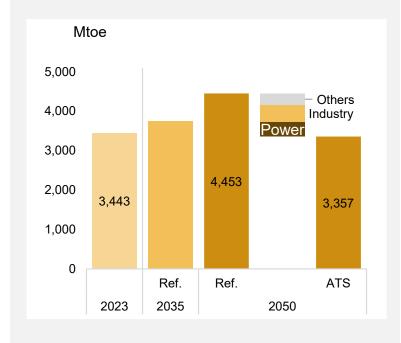
IEEJ © 2025

Fossil Fuels Demand Is Uncertain, Especially for Oil/Coal

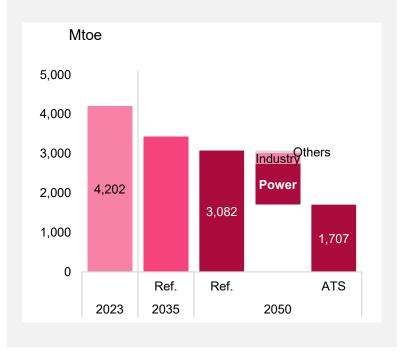

Global fossil fuel consumption shows significant differences between scenarios.

• Even in AdvTech., fossil fuels account for over half of primary energy consumption in 2050.

Primary Energy Consumption(Global)


Oil

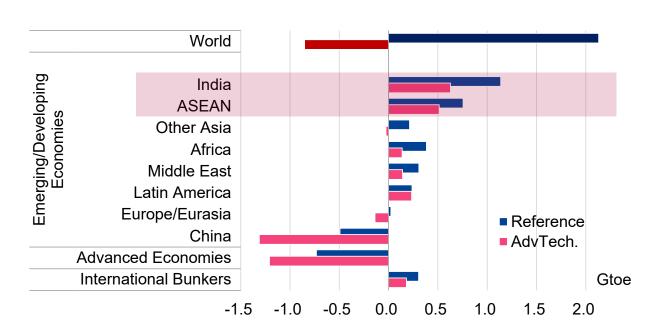
 Largest uncertainty depends on road transport trends.


Natural Gas

 Stable demand across both scenarios.

Coal

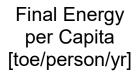
 Sharp decline under AdvTech. due to renewable substitution.

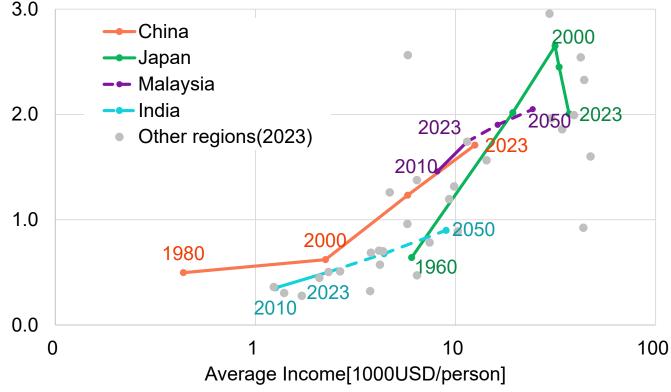

India and ASEAN Drive Energy Consumption Growth

- Reference: primary consumption increases by 14% (2050 vs. 2023).
- AdvTech: peaks around 2030, due to efficiency improvement.
 - Growth concentrates in India and ASEAN, while demand in Advanced economies and China declines.

Primary Energy Consumption

International Bunkers Gtoe Reference 15.1 17.3 AdvTech. Advanced **Economies** Other EDEs China 2000 2010 2020 2030 2040 2050

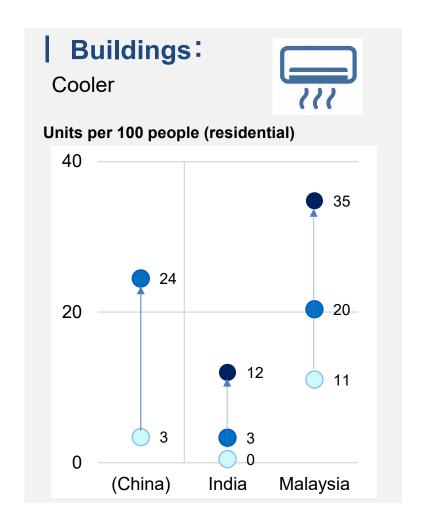

Regional Changes (2023-2050)

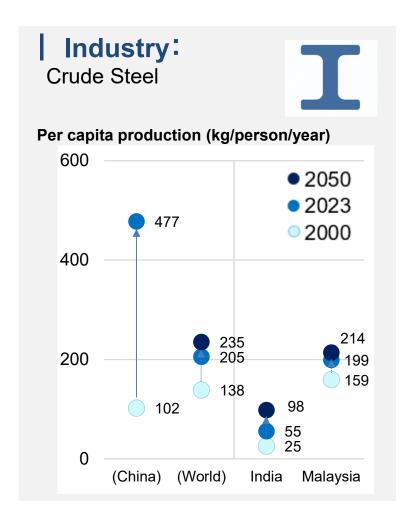


Economic Growth Makes ASEAN and India Major Consumers

- Economic growth and industrialization drive energy demand.
- India and ASEAN follow the earlier path of Japan and China.

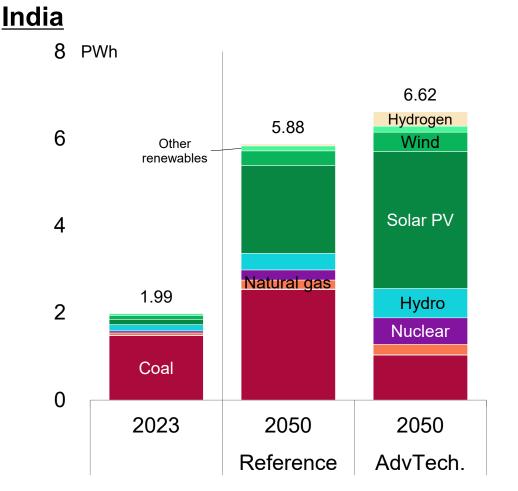
Income and
Final Energy
Per Capita
(Reference)

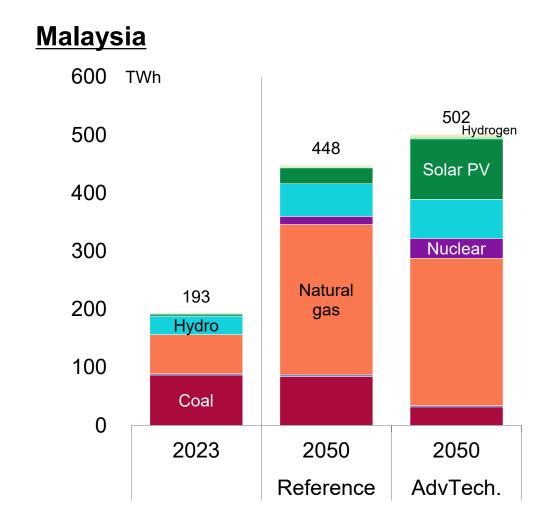



*2015 Constant Price, Logarithm

Expanding "3C" Stimulates Energy Consumption

■ Rising income leads to more use of **coolers**, **cars**, **and construction materials**(Steel, Cements) (e.g.)Penetration of "3C" in 1960s Japan, economic growth in 2000s China.

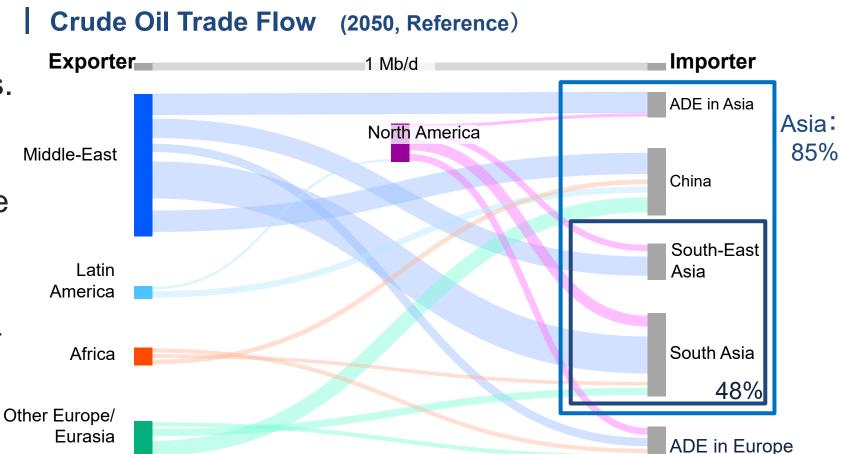




Challenges in Energy Supply and Demand Challenge (1): Rapid Increase in Power Demand

- Power generation will expand significantly in both regions.
- Rapid infrastructure development is essential, especially for both thermal power and renewables.

Power Generation



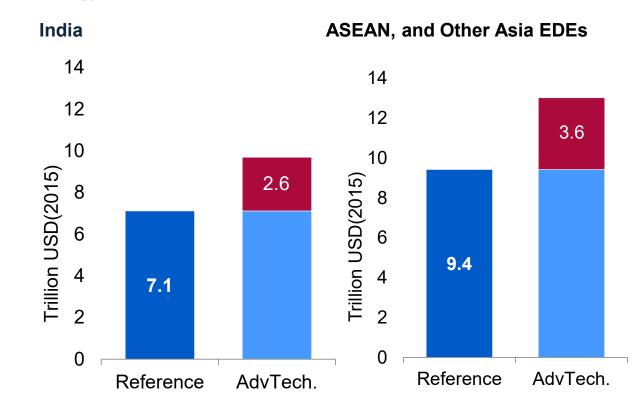
Challenges in Energy Supply and Demand (2): Rising Import Dependence on Fossil Fuel

Oil and gas demands increase, making ASEAN and India net fuel importers.

- Asia's share of global crude trade rises sharply.
 - By 2050, 85% of interregional flows head to Asia, over half to South/Southeast Asia.

Note: Shows flows of 0.5 Mb/d or greater.

Percentages represent the share of total inter-regional trade volume.


Challenges in Energy Supply and Demand (3): Investment for CO₂ Reduction

JAPAN

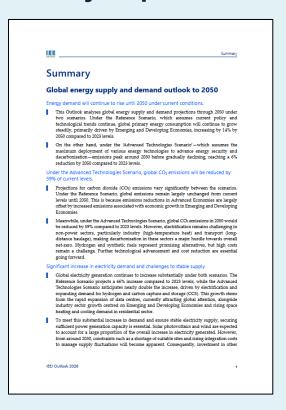
- ASEAN and India are key players for global decarbonization.
- On the other hand, substantial energy investment is required for AdvTech.

- CO2 Reduction Potential (gap between Reference.-AdvTech. in 2050)
 - 1) India + ASEAN + Other Asia EDEs
- ≒ 2) All Advanced Economies
- ≒ 3) China
- ≒ 4) Rest of the World

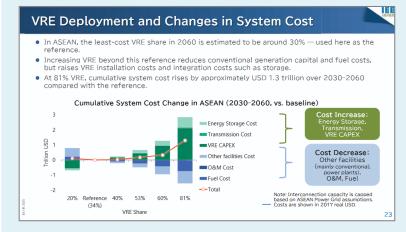
Energy Investments(Cumulative, 2024-2050)

Summary

JAPAN


- Global power demand surges through 2050, driven by economic growth, electrification, and expanding data centres.
 - > AdvTech. sees +92% generation vs 2023 due to electrification, hydrogen, and CCS.
- Fossil fuel use, particularly oil, diverges widely across scenarios; ensuring fuel supply stability remains essential, even in energy transition pathway.
- India and ASEAN are the centres of future demand growth, facing three significant challenges:
 - 1. Managing rapidly rising power demand.
 - 2. Enhancing energy security in an import-dependent dependence on Fossil fuels.
 - > 3. Securing investment for CO₂ reduction.

Thank you for your attention.


JAPAN

■ Further information of IEEJ Outlook 2026 is available on the IEEJ website.

Summary Report

Slide Materials

Global Energy Outlook:

- ✓ Key Points
- ✓ Reference Materials

Topics:

- ✓ VRE Integration Costs
- ✓ Climate Targets and Adaptation
- ✓ Al and Future of Energy Demand

Scenario Tables

Primary energy consumption	Reference Scenario																
	(Million tonnes of oil equivalent [Mtoe])									CAGR (%)				Shares (%)			
	1990	2000	2010	2023	2030	2035	2040	2045	2050	1990/	2023/	2030/	2023/	1990	2023	2030	205
Total*1	2,073	2,839	4,758	6,869	7,301	7,595	7,865	8,137	8,340	3.7	0.8	0.6	0.7	100	100	100	10
Coal	785	1,033	2,400	3,422	3,081	2,915	2,829	2,771	2,650	4.6	-1.1	-0.7	-0.9	38	50	36	3
Oil	618	918	1,171	1,576	1,702	1,750	1,810	1,863	1,903	2.9	0.8	0.5	0.7	30	23	23	2
Natural gas	116	234	454	739	884	983	1,089	1,206	1,325	5.8	2.3	2.0	2.2	5.6	11	14	1
Nuclear	77	132	152	206	282	313	344	371	403	3.0	3.1	1.6	2.5	3.7	3.0	4.4	4
Hydro	32	41	92	151	174	184	194	203	212	4.8	1.5	0.9	1.3	1.5	2.2	2.5	2
Geothermal	8.2	23	30	61	86	152	165	171	176	6.3	6.0	0.6	4.0	0.4	0.9	2.1	2
Solar, wind, etc.	1.3	2.1	16	195	533	715	830	932	1,036	16.4	8.9	2.2	6.4	0.1	2.8	11	- 1
Biomass and waste	435	456	444	518	558	580	597	609	620	0.5	0.8	0.4	0.7	21	7.5	7.6	7
Hydrogen		-	-	-	0.8	3.0	7.7	11	15	n.a.	n.a.	6.7	n.a.	-	-	0.1	0
Final energy consumption		Reference Scenario															
		(Mtoe)												Share	5 (%)		
	1990	2000	2010	2023	2030	2035	2040	2045	2050	2023	2030	2050	2050	1990	2023	2030	20!
Total	1,515	1,952	3,128	4,280	4,774	4,996	5,179	5,350	5,488	3.2	1.1	0.6	0.9	100	100	100	10
Coal	423	372	885	746	757	729	702	678	654	1.7	-0.4	-0.7	-0.5	28	17	14	- 1
Oil	465	743	992	1,405	1,524	1,569	1,625	1,675	1,714	3.4	0.9	0.5	0.7	31	33	31	3
Natural gas	46	90	201	414	483	517	540	555	561	6.9	1.6	0.4	1.1	3.1	9.7	10	1
Electricity	157	279	575	1,107	1,370	1,537	1,681	1,827	1,962	6.1	2.5	1.6	2.1	10	26	32	3
Heat	14	30	70	204	249	252	240	224	205	8.4	1.0	-1.6	0.0	0.9	4.8	4.6	3
Hydrogen	-		-	-	0.2	0.2	0.8	2.2	3.9	n.a.		17.5	n.a.	-	-	-	C
Renewables and waste	409	437	405	403	389	393	390	390	388	0.0	-0.2	-0.1	-0.1	27	9.4	7.5	7

- ✓ Primary Consumption
- ✓ Power Generation Mix
- ✓ CO2 Emissions
- √ Key Assumptions etc.