IEEJ © Nov.2024

IEEJ Webinar for the World 22. Nov. 2024

IEEJ Outlook 2025

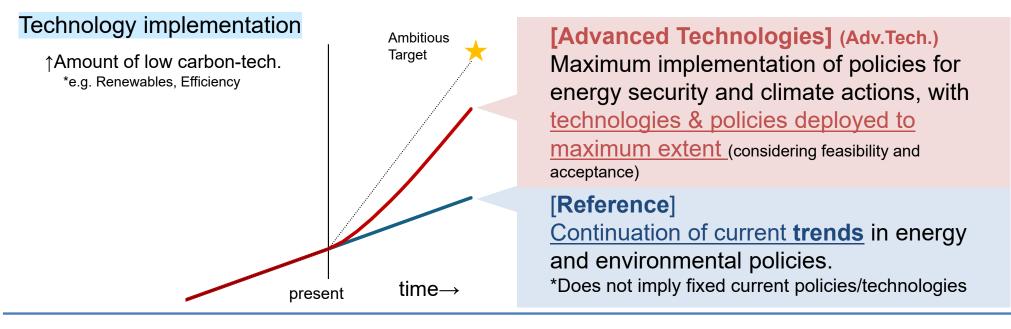
- How to Address the Uncertainties Surrounding the Energy Transition -

Global Energy Supply and Demand Outlook to 2050

The Institute of Energy Economics, Japan

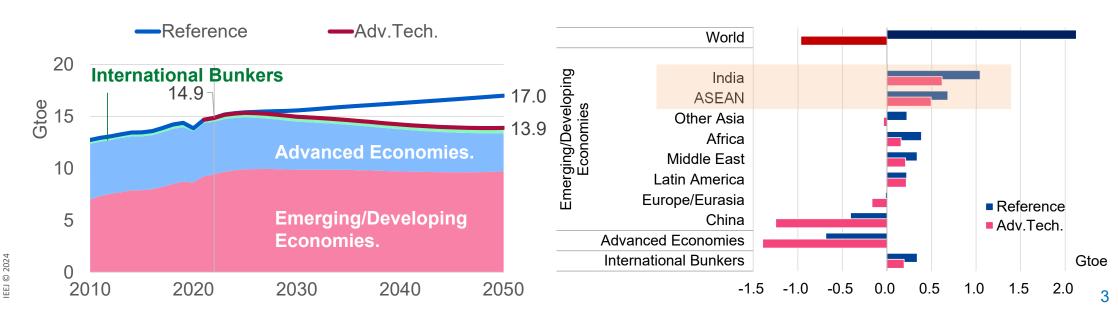
Seiya ENDO Senior Economist, Energy Data and Modelling Center

Key Points


 Quantitative assessment of global energy supply and demand outlook through 2050, using two scenarios: (Reference: Current Trends & AdvancedTechnologies: Max.Climate Actions)

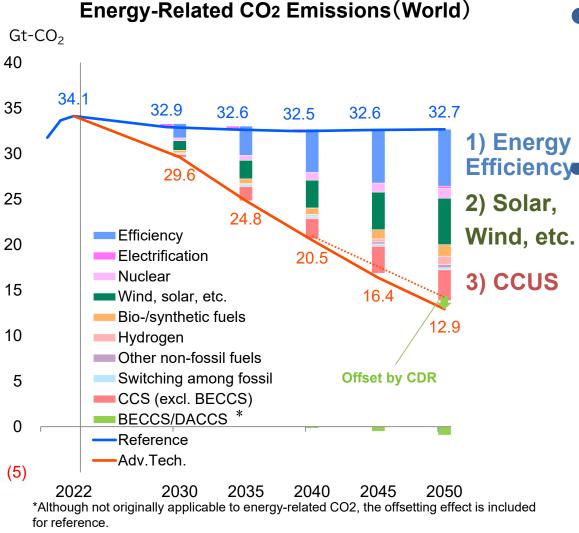
- CO2 reduction requires deployment of all available technologies .
 Short term (1) energy efficiency, (2) renewables (especially solar and wind)
- Longer term (3) CCUS (significant contributions).
 - The outlook and implementation challenges for each are analyzed.
- ✓ Demand for fossil fuel faces significant uncertainty.
 - Securing stable supply remains essential over the coming decades.

Scenario Framework


- Global energy supply and demand outlook through 2050.
 - Model analysis incorporating the latest energy and socioeconomic data. Estimated energy demand by type and CO2 emissions for 44 global regions plus international bunkers.
- Two scenarios with assumptions on different levels of technology and policy progression.
 - Both are forecast-type scenarios examining "what if" scenarios (target achievement is not incorporated).
 - They are not back-cast-type scenarios (which work backward from targets to determine "what should be done").

Primary Energy Demand: India and ASEAN at Center of Demand Growth

- **Reference:** Primary energy demand increases by14% from 2022 to 2050.
 - Real GDP doubles during this period. Efficiency improvements and industrial structure transformation suppress demand.
- Adv.Tech: Energy efficiency improvements accelerate, primary demand peaks before 2030.
- India and ASEAN drive demand growth in both scenarios, pushing up global demand.
 - Global emissions reduction requires engagement of these two regions plus other emerging/developing economies.



Primarv Energy Demand (Global)

Primary Energy Demand Change(2022-2050)

CO2 Reduction: Energy Efficiency, Renewables and CCUS

• <u>Reference</u>

 Despite growth in energy demand, expansion of renewables, electrification and natural gas switching suppress emissions.

Efficiency Adv.Tech

- Major contributors to CO2 reduction are (1) energy efficiency, (2) renewables (solar/wind), and (3) CCUS.
 - (1) and (2) contribute significantly from 2030, CCUS expands after 2040
 - Carbon removal (BECCS, DACCS) cancels a part of remaining emissions.
 - The remaining gap between the 2 scenarios and the "2050 Net Zero" target, is particularly challenging for emerging/developing economies and non-power sectors.

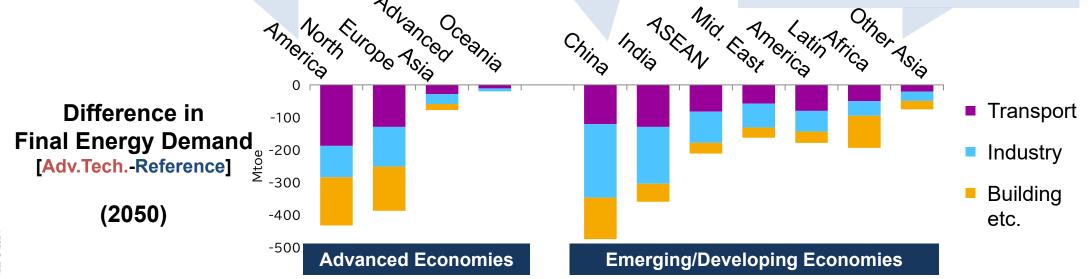
EEJ © 2024

1) Energy Efficiency: <u>Different Priority Areas by Regional/Economic Level</u>

Sectors with particularly effective efficiency improvements vary by region.

Advanced economies show improvement in efficiency across sectors.

Transportation shows particularly large reductions due to next-generation vehicles (EVs, hybrids) with better efficiency.


Emerging economies (especially China, India, ASEAN) focus on industry.

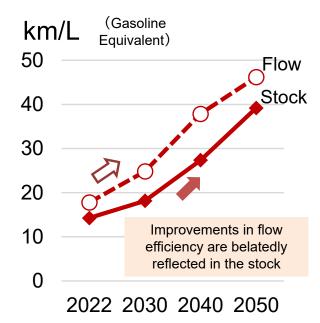
Major industrial production in China and expected growth in India/ASEAN make industrial efficiency improvements effective.

Developing economies (Africa, Other Asia) show major reductions in residential.

Household transition from traditional biomass (wood) to LPG, city gas, and eventually electricity.

Challenges: Funding for equipment adoption and affordable modern energy supply

IEE

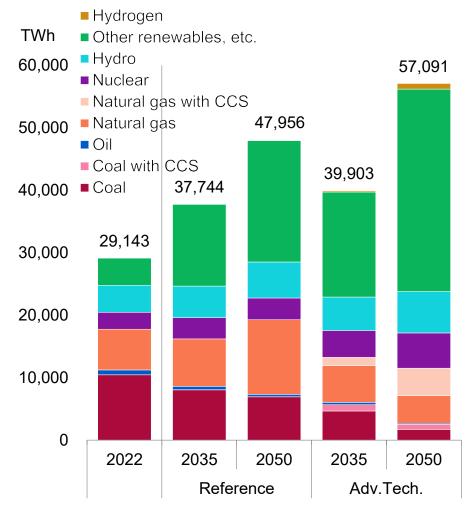

1) Energy Efficiency: Delayed Effect of Improvements

- Energy Efficiency: Delayed Effect of Improvements.
 - Intensity improvements in Adv.Tech become particularly evident after 2030.
- Flow efficiency (new equipment) reflects in stock efficiency (existing equipment) with delay.
 - Particularly pronounced in industrial sector with long equipment lifespans
 - Early action necessary for significant energy savings by 2050.

Average annual improvement of primary energy demand intensity (World)

		2010-2022	2022-2030	2030-2040	2040-2050
TPES/GDP	Reference	-1.4% (history)	-2.0%	-2.2%	-2.0%
	Advanced		-2.5%	-3.1%	-2.7%

Average fuel economy of passenger vehicles (Adv.Tech, World)


Average years of equipment use (example)

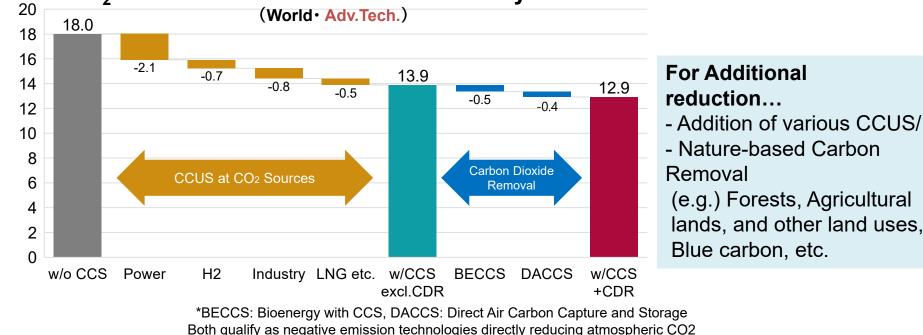
Sector	Facilities	Lifetime (year)	
Industry	Blast Furnace	10~25	
	Boiler	20~40	
Building	Air Conditioner	10~20	
	House	30~	
Transport	Passenger Vehicles	10~15	
	Airplanes	20~30	
Power	Thermal	25~40	
	Solar PV	15~30	

2) Renewables: Share reaches 60% in Adv. Tech.

Power Generation (World)

Power generation in 2050 requires 1.6x (Reference) and 2.0x (Adv.Tech.) vs 2022 levels.

- Substantial power demand increase is unavoidable in both scenarios.
- Particularly in emerging/developing economies; urgent need for generation and transmission expansion.

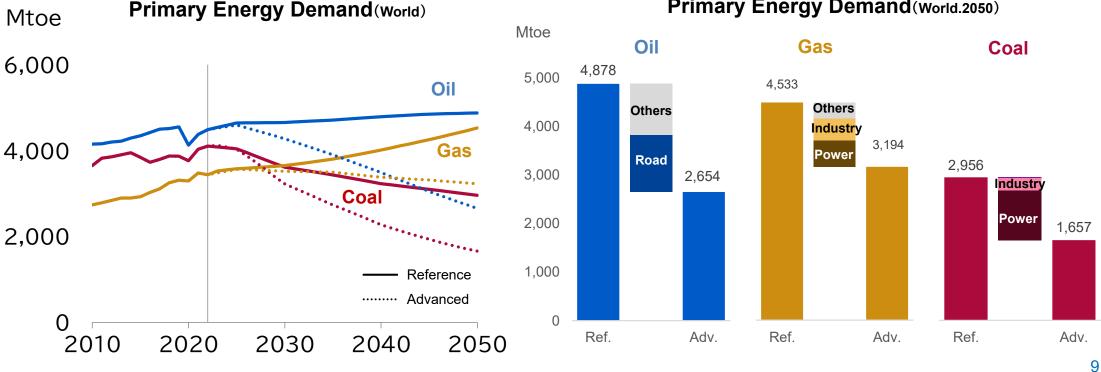

Adv.Tech: "Renewables (excl. hydro)" increase dramatically to 60% of power.

 Mostly solar and wind; implementation at this scale requires fundamental intermittency countermeasures.

Nuclear expands particularly in emerging/developing economies.

3) CCUS: Major Deployment Potential in Industry and Power Generation

- Adv.Tech. projects total CCUS deployment of 5.1 Gt-CO2 by 2050.
 - Shows the largest reduction potential for point-source in Power sector.
 - Becomes a key decarbonization method for industry sectors with limited electrification potential, like steel and cement.
 - Carbon removal (BECCS, DACCS* in this outlook) expected to be higher cost but valuable for offsetting residual emissions from sectors where capturing is difficult (Building/ Transport).



CO₂ emissions and reduction/removal by CCUS

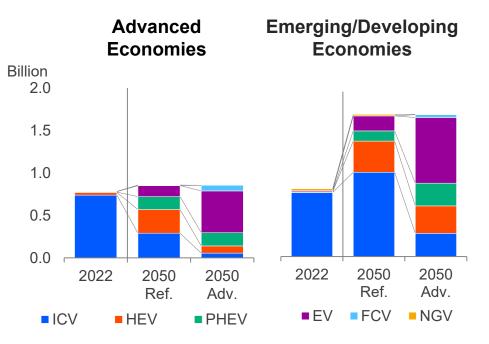
Fossil Fuel Demand Uncertainty: Wide Gap Between Scenarios

- Large divergence in fossil fuel demand between Reference and Adv.Tech. scenarios. While pursuing energy transition, a stable fossil fuel supply remains necessary.
 - Oil shows the largest demand difference, with road transport accounting for over half. Uncertainty in EV/HEV adoption, and ICE efficiency improvements.
 - Natural gas and coal demand differences are primarily driven by power generation and industry.

EEJ © 2024

Primary Energy Demand(World.2050)

Final Energy Demand:


Transport (Especially Road) Shows Major Divergence

• [Reference] Transport sector demand grows significantly in emerging economies.

• Vehicle ownership in emerging/developing economies more than double by 2050 from 2022. Oil demand varies greatly depending on fuel efficiency improvements and powertrain choices.

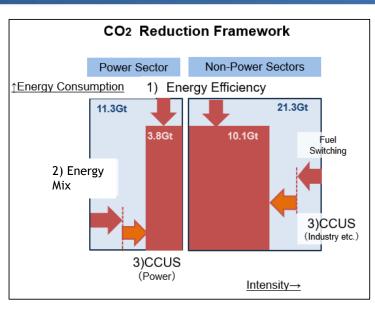
• [Adv.Tech.] Efficiency improves particularly in road transport.

• While EVs see mass adoption, ICEs and hybrids maintain presence, especially in emerging/developing economies. Vehicle choice is important based on power mix, range requirements, and usage frequency.

Vehicle Ownership(By Powertrain)

Summary

<u>CO2 reduction relies primarily on (1) energy efficiency,</u> (2) renewables, and long-term (3) CCUS. [Adv.Tech.]


- Energy efficiency enhancement provides 6.2 Gt-CO2 reduction; early action is essential due to implementation lag.
- Renewables (excl. hydro) reach ~60% of total generation; variable renewable capacity exceeds twice the average load.
- CCUS promising for large emission sources in power and industry; 5.1 Gt-CO2/year capture (including CDR).

Primary Demand and Power Generation Trends

- India, ASEAN show dramatic primary energy demand increase. International climate actions must cover these regions.
- Global power generation increase by 2050 from 2022: 1.6x (Reference), 2.0x (Adv. Tech.).

Significant Fossil Fuel Demand Uncertainty.

- Under current trends, gas and oil demand will continue growing through 2050.
- Drivers of uncertainty : road transport for oil; industry and power generation for gas/coal.
- Stable fossil fuel supply remains critical through 2050. Sustained adequate investment essential.

