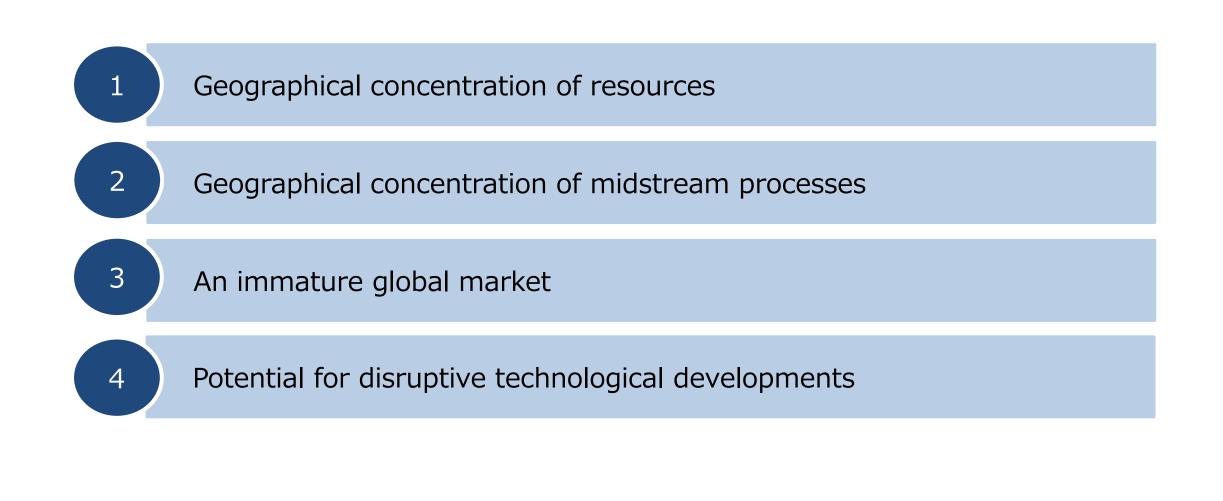
The 9th IEEJ/APERC International Energy Symposium, Tokyo Japan, 19 April 2024

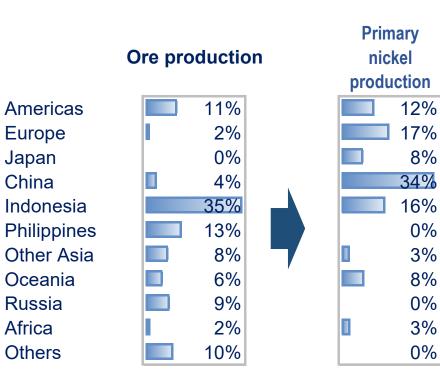


How to manage the risk of critical minerals supply?

The Institute of Energy Economics, Japan

Ichiro Kutani Senior Research Director Energy Security Unit

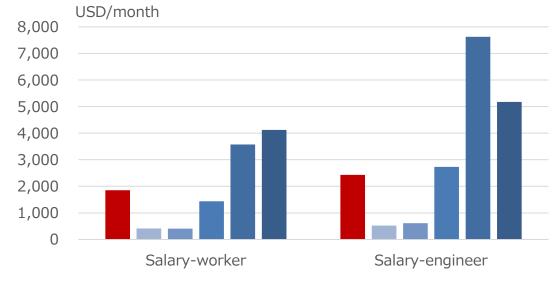
> Please visit us. https://eneken.ieej.or.jp/en/


Geographical concentration

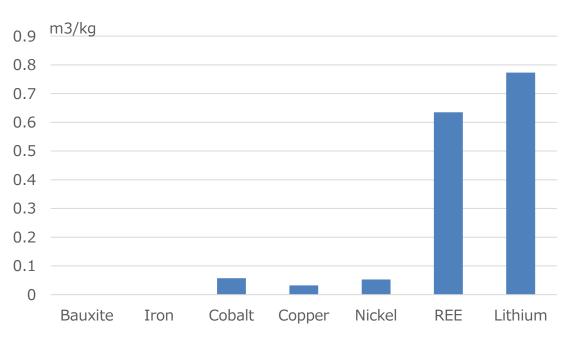
Reserves, production, and refining of many critical minerals are unevenly distributed to specific countries.

Country-wise share of reserves in selected minerals

Share of nickel ore and primary nickel production by country (2019)

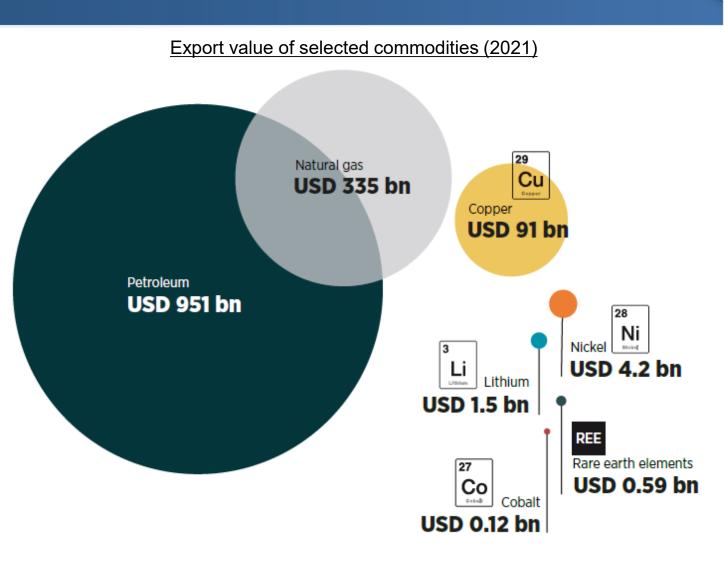

						PGM	
	Cu	Co	Ni	Li	V	(platinum	REO
	(copper)	(cobalt)	(nickel)	(lithium)	(vanadium)	group)	(rare earth)
United States	5%	1%	0%	3%	0%	1%	2%
Canada	1%	3%	2%	0%	0%	0%	1%
Mexico	6%	0%	0%	0%	0%	0%	0%
Brazil	0%	0%	— 17%	0%	1%	0%	E 18%
Peru	9%	0%	0%	0%	0%	0%	0%
Chile	23%	0%	0%	42%	0%	0%	0%
Argentina	0%	0%	0%	10%	0%	0%	0%
Cuba	0%	7%	0%	0%	0%	0%	0%
Australia	11%	18%	22%	26%	25%	0%	3%
Indonesia	3%	8%	22%	0%	0%	0%	0%
Philippines	0%	3%	5%	0%	0%	0%	0%
Viet Nam	0%	0%	0%	0%	0%	0%	1 8%
China	3%	1%	3%	7%	40%	0%	37%
Kazakhstan	2%	0%	0%	0%	0%	0%	0%
Russia	1%	3%	8%	0%	21%	6%	1 8%
Zimbabwe	0%	0%	0%	1%	0%	2%	0%
DR Congo	4%	46%	0%	0%	0%	0%	0%
South Africa	0%	0%	0%	0%	15%	90%	1%
Others	33%	9%	21%	11%	0%	0%	


APAD


Cost of minerals production

- As mineral extraction and smelting are energy-intensive and environmentally damaging processes, it is not easy to find competitive new sources of supply.
 - Labor and land cost.
 - Costs of electricity and water.
 - Costs of environmental measures.

Labor cost in selected cities

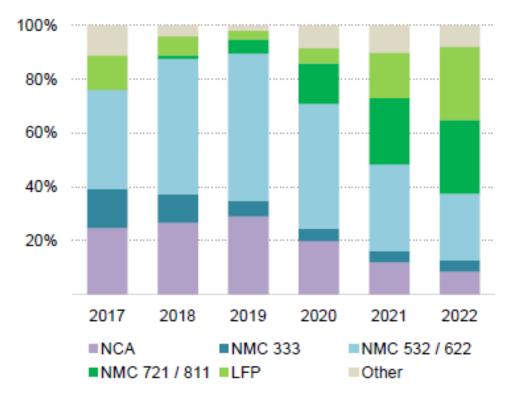

Water use for selected minerals

Source: IEA, Sustainable and responsible development of minerals

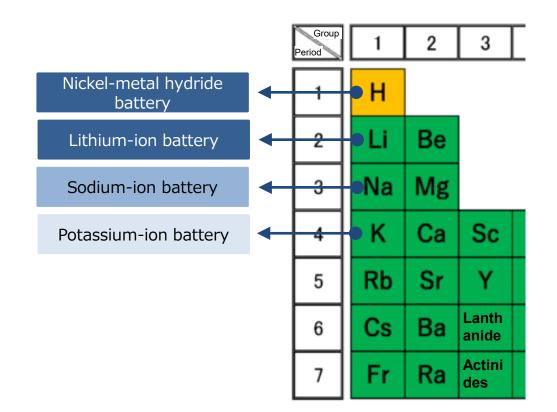
An immature market

- The market size of minerals is small compared to that of energy.
 - Smaller number of market participants.
 - Smaller transaction amount.
- As a result, market liquidity is not large enough to provide a security of supply/demand function.

Source: (UN COMTRADE database).


Note: Numbers represent trade in raw, unprocessed fuels and ores only.

Source: IRENA (2023)


Potential for disruptive technological developments

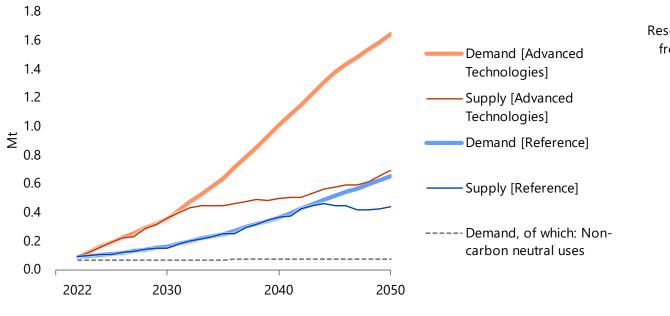
- The development of decarbonization technologies is ongoing.
- Therefore, the demand for, as well as the definition of, critical minerals could change in the future.
- This makes investment difficult.

Evolution of sales share of EV batteries by cathode chemistry

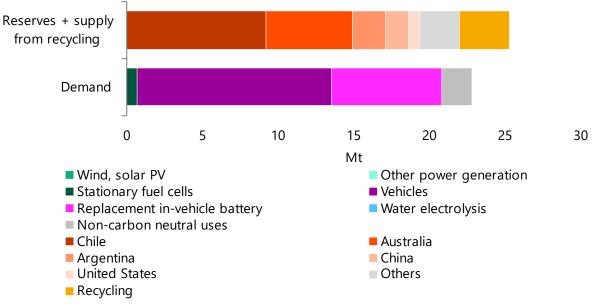
Periodic table and battery potential

NCA = Nickel-Cobalt- Aluminum, NMC = Nickel-Manganese-Cobalt

LFP = lithium ion phosphate


Source: IEA (2023), Critical minerals market review 2023

APAN


Future can change significantly

- In its 2022 analysis, the IEEJ highlighted the possibility of future lithium supply shortages.
- However, this situation could change significantly with future technological developments.
 What happens if;
 - New production sites come on stream?
 - Recycling technology is commercialized in scale?
 - Lithium-ion batteries are no longer mainstream?

Supply-demand outlook of Lithium

Comparison of cumulative demand and reserves (+ recycled supply)

Source: IEEJ (2022), Outlook 2023

EEJ © 2024

APAI

The experience of Japan in 2010

• Japan has taken measures to reduce the risk of critical mineral supplies.

Comprehensive Rare Earth Measures (October 2010)					
Development of technologies to reduce/alternate materials (12B Yen)	 Accelerated development of tech. to use alternative materials (6 ores) Progress in joint international research (International clean energy technology cooperation) 				
Strengthen recycling of rare earth (3B Yen)	 Development of recycling technology Promote capital investment 				
Enhance resilience of industries against rare earth supply shock (39B Yen)	 Support for investment needed to improve resilience to rare earth supply risks. Introduction of equipment to reduce consumption. Introduction of new processes that do not use rare earths. Increase concentration of domestic industries with high-level rare earth use. 				
Secure mining concessions , development, and supply (46B Yen)	Secure concessions and develop sources other than China •JOGMEC investment, risk money supply •Stronger relations with supplier states				

How to manage the risks?

JAPAN

Short to mid-term

- **Inventories** help to mitigate shocks.
- Ensure free trade of minerals.
- Improve market transparency.
 - Supply, demand, inventory, price data
 - Share the market prospects.

Long-term

- Support the development of new capacity of mineral supply.
- Support the development of recycling technologies and its business models.
 - Need careful assessment of their energy/GHG efficiency and economic viability.
- Support the development of technologies to conserve and alternate the minerals.

Thank you !