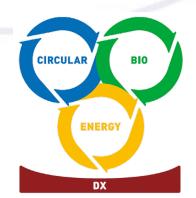


9th IEEJ/APERC International Energy Symposium


NEDO's Activities toward building Sustainable Society

Apr. 19th, 2023

Tsutomu Nakamura

Director General Environment and Green Chemistry Unit Technology Strategy Center (TSC) New Energy and Industrial Technology Development Organization (NEDO)

©NED02023

IEEJ: April 2024 ©IEEJ2024

<u>New Energy and Industrial Technology</u> <u>Development</u> <u>Organization</u> (NEDO)

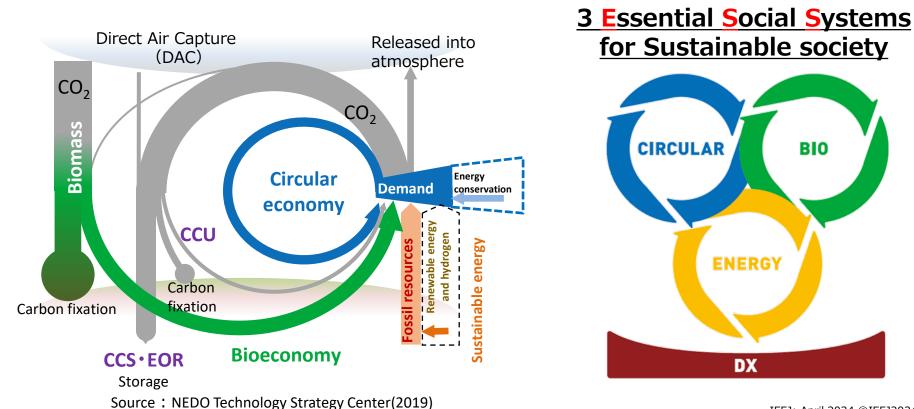
Organization Mission	National Research and Development Agency 1. Addressing energy and global environmental problems 2. Enhancing industrial technology				
Established	1980				
Budget	1.01 billion US dollars (FY2023) + additional "funds"				
Employees	1,464 (as of Apr. 1, 2023)				
National government and Ministry of Economy, Trade and Industry Industry Industry National guidelines, budgets Industry National guidelines, budgets Industry Project participation Industry Industry Project participation Industry Industry Project participation					
Policy formulation System design		Operation, assessment			
Main Roles of	operation.	Promoting practical application Realizing open innovation			

Comprehensive R&D Principle for Sustainable Society

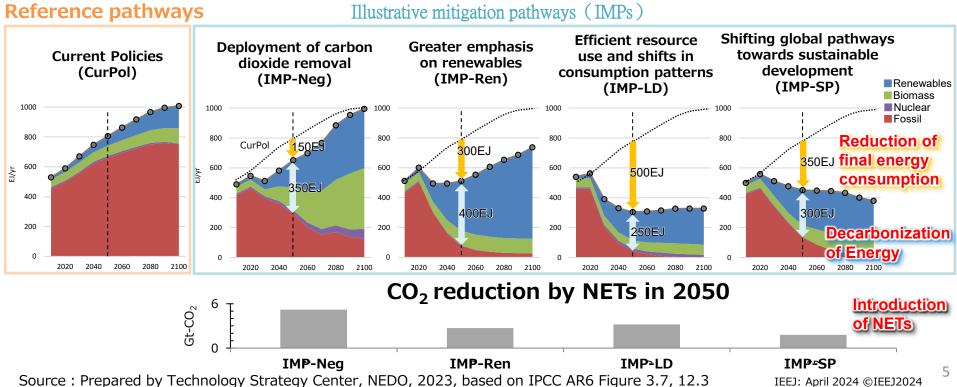
TSC Environment & Green Chemistry Unit

NEDO published the 2nd edition of "Comprehensive R&D Principle for Sustainable Society" in 2023.

"Objective of Comprehensive R&D Principle 2023"


- The purpose of Comprehensive R&D Principle 2023 is to identify and overlook of key technologies for achieving carbon neutrality based on the latest social and technological trends, and to advocate for the comprehensive and objective evaluation of the CO2 reduction of these technologies.
- Additionally, NEDO expects to provide specific calculations for several key technologies to assist evaluating the technologies you should focus on for development and demonstration.

- CO₂ emissions in the "demand" category shown in blue are reduced through energy conservation and substitution with renewable energy, hydrogen, and biomass, as well as through recycling and sharing to reduce the demand for energy and materials themselves.
- Emitted CO₂ is separated and recovered, stored in CCS, and partially used in CCU.
 Atmospheric CO₂ is fixed in biomass through afforestation, etc., and separated and recovered using DAC.

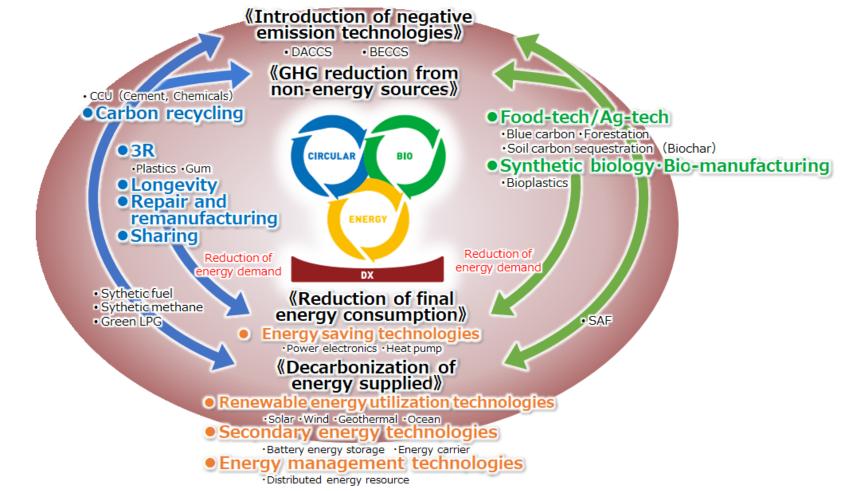


Key Initiatives to Achieve Carbon Neutrality

TSC Environment & Green Chemistry Unit

- Limiting warming to 1.5°C, rapid and significant GHG emission reductions have illustrated in the scenarios(IMPs) by IPCC AR6 WG3.
- Efforts to decarbonize energy supplied, reduce final energy consumption, and introduce negative emission technologies (NETs) are the key initiatives in each 4 scenario.
- In addition, GHG reduction from non-energy sources, such as utilizing CO₂ and biomass as raw materials, are also important.

The trend of world primary energy supply in each of the illustrative pathways



Overview of Key Technologies

- The figure below shows key technologies that contribute to the "Key Initiatives" for carbon neutrality.
- It is important to promote "Key Initiatives" through collaboration and synergy among the three social systems.

TSC Environment & Green Chemistry Unit

Green Innovation Fund Projects

(converted at the exchange of 1 USD = 150 yen)

- To achieve carbon neutrality by 2050, Government of Japan established a fund of about 18B USD (2.7T JPY) as part of NEDO. The fund will be executed over a tenyear period.
- METI/NEDO seeks the commitment of the company managers to persevere in challenging these goals.
- Currently 20 projects are underway

Project cases (For more information, please check <u>https://green-innovation.nedo.go.jp/en/</u>)

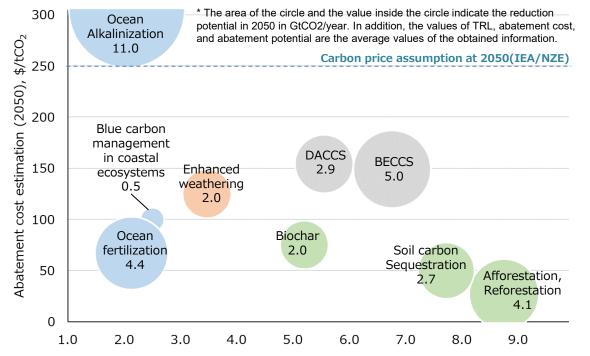
Cost Reduction for **Offshore wind** Power Generation

Development of Technology for **CO2 Separation, Capture**, etc. IEEJ: April 2024 ©IEEJ2024

Hydrogen Production through Water Electrolysis Using Power from Renewables

Development of Technology for Producing **Fuel Using CO2**, etc.

Large-scale **Hydrogen Supply Chain** Establishment

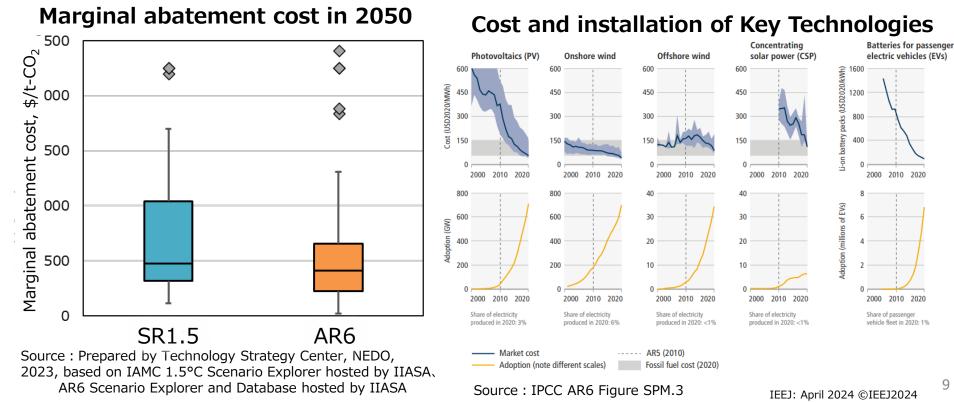


Hydrogen Utilization in Iron and Steelmaking Processes

CIRCULAR BIO ENERGY DX

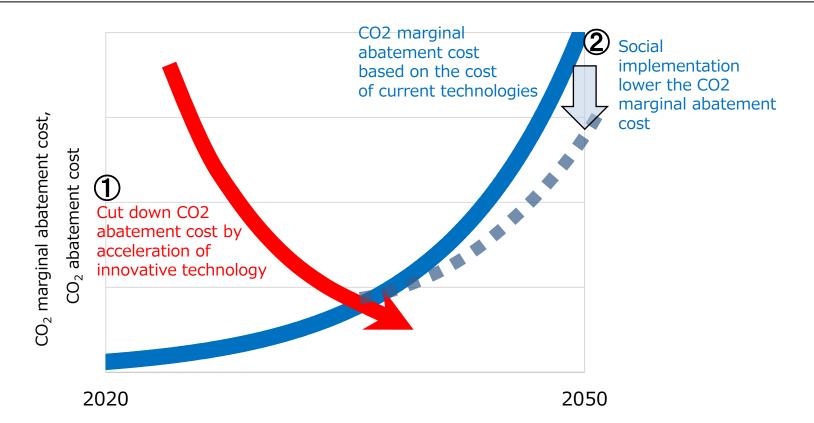
Negative Emission Technologies(Cost, Potential, TRL)

- Most of the NETs are expected to achieve abatement cost of less than \$200/tCO2 in 2050, although some technologies, such as ocean-related, enhanced-weathering, DACCS, and biochar, are in development.
- DACCS and BECCS have definite CO2 removal effect, but costs need to be reduced.
- NETs, which accelerates natural phenomena, has excellent features for low-cost CO2 removal, but they are need to evaluate scientifically the CO2 removal effect and environmental impacts, co-benefits.
- NEDO is developing technologies for DAC, blue carbon, biochar and enhanced weathering in the moonshot project and GI-fund project.



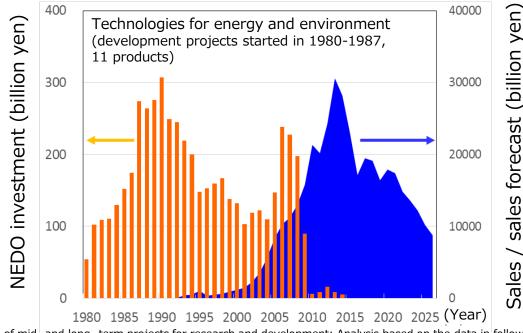
- The marginal abatement cost ^{*} under the 1.5℃ scenario in IPCC AR6 (2022) can reach \$200~700/tCO₂ in 2050. It tends to decrease compared with the value in the IPCC special report, Global Warming of 1.5℃.
- The costs of technologies for carbon neutrality such as PV, wind power and battery storage have been continuously reduced. However, **disruptive innovation** is necessary in various technological fields in order to reduce the marginal abatement cost further to the value that the world can accept.

% the cost incurred to reduce an additional 1 ton of CO₂ emissions



Reduction of abatement cost by acceleration of technology development

- Progress in the R&D of an innovative technology (e.g. PV, wind, battery, etc.) lowers the CO₂ abatement cost (red).
- Assuming that the rapid social implementation starts at the intersection of CO₂ abatement cost and marginal CO₂ abatement cost, the social implementation cuts down the marginal CO₂ abatement cost significantly, leading to dramatic reduction of countermeasures.


Importance of early start of innovative technology development

TSC Environment & Green Chemistry Unit

It is important to start technology development as early as possible and to accelerate innovation since it takes about 20 years until the beginning of the product sales in the filed of energy and environment according to the NEDO's analysis on the previous projects.

Technology field	Average period for NEDO investment	Average period from development to sale		11 products, including solar power generation, wind power generation, and residential heat pump water heaters, which started development between 1980 and 1987
Energy and environment	17 years (6 \sim 34 years)	20 years (6~34 years)		
Industrial technologies	6 years (1~15 years)	7 years (3~14 years)		29 products, including continuously variable transmission for automobile, power semiconductors, which started development between 1998 and 2002

Source : "Investigation on the outcome of mid- and long- term projects for research and development: Analysis based on the data in follow-up research by NEDO" (NEDO) 11 IEEJ: April 2024 ©IEEJ2024

- According to IPCC AR6, the CO2 abatement cost in 1.5° scenario can reach approximately $200^{\circ}700/tCO_2$ in 2050. Disruptive innovation is essential to reduce the cost to levels acceptable to the world.
- To achieve carbon neutrality, innovation is necessary in key technologies such as decarbonization of energy supplied (renewable energy, hydrogen, etc.), reduction of final energy consumption (energy-efficient technologies, recycling technologies), and introduction of negative emission technologies. Additionally, non-energy-related GHG reduction sources such as rawmaterial conversion are also crucial.
- Since technologies in the energy and environmental sectors often take a long time to be implemented in society, it's crucial to initiate them early, accelerate their development, and promote their social implementation.
- The issue of global warming cannot be solved by Japan alone; it is a critical challenge that requires international collaboration and rule-making to address collectively on a global scale.

Thank you for your attention!

13

New Energy and Industrial Technology Development Organization

IEEJ: April 2024 ©IEEJ2024

Contact: report@tky.ieej.or.jp