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Background & Objectives

2

v For Japan to achieve carbon neutrality by 2050, import of clean hydrogen from overseas will be necessary. 

v Blue hydrogen, though cheaper today, has higher carbon footprint than green hydrogen. Besides, blue hydrogen also has 
other risks such as increasing pressure on divestment of fossil fuel assets, etc.. In this sense, green hydrogen is one of 
the important options for future clean energy supply. 

v Furthermore, resource countries of green hydrogen is more diversified than that of blue hydrogen, which will also 
contribute to Japan’s energy security. 

This study reveals the costs and carbon footprint across the whole green and blue hydrogen supply chains 
from potential suppliers to Japan.
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Methodology: Hydrogen Supply
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Methodology: Blue NH3 from Natural Gas
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v Since the process of NH3 production from natural gas is already a mature and widely-used technology, the 
study assumes hydrogen production and NH3 production are integrated in the case of blue NH3 production 
from natural gas.
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Methodology: Flow for GHG Emission Estimation
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Base Case Low Electrolyzer Cost Case
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Major Assumptions (1)
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Two cases for Electrolyzer CAPEX (2030)

v225,000 ton annual hydrogen production 
(annual hydrogen consumption for 1 GW scale 
hydrogen power generation plant)

v2030 as reference year

v CAPEX, OPEX, conversion efficiency, and other 
technical spec assumptions based on studies from IEA 
(Future of Hydrogen) and Applied Energy Institute, etc.  
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Major Assumptions (2) 
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Assumptions on RE LCOE and Capacity Factor (2030)
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(USD/ton) 16.2 -

Fossil Fuel Price (2030)

v Assumptions on renewable LCOE, capacity factor, fossil fuel prices, etc. were made based on published research
reports.
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Major Assumptions (3)
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Major Assumptions (4)
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v90% carbon capture rates for bule hydrogen/NH3 (IEA)

vUS EPA’s report* is the reference for the estimation 
of fossil fuel upstream GHG emission factor

4.2

2.7

Natural gas Coal

g-CO2eq/MJ

g-CO2eq/MJ

＊United States Environmental Protection Agency, Inventory of U.S. 
Greenhouse Gas Emissions and Sinks 1990-2019

Assumptions on Fossil Fuel’s Upstream GHG 
Emission Factor

Resource Country Emission Factor
(kg-CO2/kWh)

Australia 0.40

Chile 0.10

Saudi Arabia 0.30

United States 0.27

Assumptions on Grid CO2 Emission 
Factor (2030)

＊Grid CO2 emission factors were estimated based on the countries’ 
2030 power generation mixes published by the governments. 
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Major Findings: Hydrogen Production Cost
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Hydrogen Production Cost (2030)
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v If electrolyzer’s CAPEX could be reduced to around 1/3 of today’s level (900USD/kW) by 2030, green hydrogen
production cost in countries such as Chile or Australia can be cheaper than blue hydrogen.
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Major Findings: Hydrogen Import Cost
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Liquefied Hydrogen
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v Green hydrogen from Chile has the lowest cost when the hydrogen carrier is liquefied hydrogen or MCH.
v However, when the hydrogen carrier is ammonia, blue hydrogen (produced with natural gas + CCS) is the cheapest. 
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Major Findings: Carbon Footprint
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v For hydrogen production, carbon footprint of green hydrogen is much lower than that of blue hydrogen.
v However, if electricity input for hydrogen conversion, transportation, and storage is from the grid (which is the

assumption for this study), hydrogen supply chain from countries with lower grid CO2 emission factor, such as Chile,
will has lower carbon footprint.

v Among the hydrogen carriers, liquefied hydrogen has the lowest carbon footprint because shipping fuel is also liquefied
hydrogen, liquefied hydrogen supply chain needs no reconversion,.

v For ammonia, if it is used directly (means no reconversion needed) the supply chain’s carbon footprint will be lower.
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Major Findings: Impact of Carbon Price (assuming 100USD/CO2
carbon price)
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Liquefied Hydrogen MCH Ammonia

v If hydrogen carrier is liquefied hydrogen or MCH, in the Low Electrolyzer Cost Case the import cost of green 
hydrogen from Chile can be competitive with blue hydrogen from Saudi Arabia. 

v However, when the hydrogen carrier is ammonia, blue hydrogen from Saudi Arabia still has cost advantage. 
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Major Findings: Ammonia Direct Use
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v If ammonia is used directly as fuel (no reconversion needed), blue ammonia from natural gas (from Australia or Saudi 
Arabia natural gas) has the lowest cost. 
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Major Findings: Ammonia Direct Use (carbon price: 100USD/t-CO2)
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v Even with a carbon price of 100USD/t-CO2, the cost advantage of blue ammonia from natural gas (from Australia or 
Saudi Arabia) can still be maintained. 
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Uncertainties

20

It should be noted that there are uncertainties in the assumptions made in this 
study:

v Blue hydrogen/ammonia is assumed to be produced with an additional cost for CCS with a carbon capture rate of 
90%. However, in the case of blue ammonia, the current carbon capture rate for the entire blue ammonia production 
from gas is, in general, 50% to 60%. If a carbon capture rate of 90% is sought for all blue ammonia production, costs 
could be higher. 

v In terms of green ammonia production, this study assumes the same process as blue ammonia production from gas. 
However, to maintain the large-scale and constant operation assumed for this process additional equipment such as 
buffer tank will be needed to cope with variable input (since the hydrogen for ammonia production is produced with 
variable RE).

v Assumptions of this study were made based on best available data when the report was published. However, the 
technologies associated with hydrogen supply chain are evolving very fast and how to reflect the up-to-date 
technology development in the calculation will be an issue for future analysis. 
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Implications
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Cost Reduction of Green Hydrogen Supply Chain

v Green hydrogen from Chile has the lowest cost among the green hydrogen options. Green hydrogen could be 
cheaper than blue hydrogen by 2030 with electrolyzer’s CAPEX be lowered to 1/3 of today’s level (900USD/kW). 

v To achieve the hydrogen price target set by the Japanese Government (30JPY/Nm3(≒3.1USD/kg-H2) by 2030, 
20JPY/Nm3(≒2.1USD/kg-H2) by 2050), besides continued efforts on R&D of liquefied hydrogen and MCH, measures for 
production cost reduction of green hydrogen in the resource countries will be needed.  

v Some of the green hydrogen production cost reduction measures include:
ü Smoothed power input to electrolyzer from a combination of solar PV and wind
ü R&D on electrolyzer’s cost reduction 
ü Scaling-up market for green hydrogen applications including markets in resource countries. For example, market for utilizing 

green hydrogen for grid balancing

v Cooperation between Japan and resource countries is necessary
ü Supporting resource countries on developing hydrogen strategy/roadmap, which can help encouraging more investment to 

green hydrogen
ü Sharing know-hows with resource countries on domestic hydrogen supply infrastructure
ü Cooperation with resource countries on hydrogen export infrastructures, e.g. ports, etc. 
ü Cooperation on international certifications / standards for hydrogen supply chain’s carbon footprint evaluation
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Implications
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Other Implications: Energy Security

v Import of green hydrogen from countries in the Asia-Pacific region such as Chile will contribute to Japan’s energy
security because of the diversification of energy supply sources.

v Though there may be concerns that long distance between Chile and Japan would result in high shipping cost of
hydrogen, the results of the study suggest that long shipping distance’s impact on the overall hydrogen import cost is
actually quite limited.
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Thanks for your time and attention.

Contact:report@tky.ieej.or.jp




