#### Renewable energy and the smart grid

#### Presentation 3rd Asian IAEE

21 February 2012 Kyoto, Japan

Perry Sioshansi Menlo Energy Economics

San Francisco CA www.menloenergy.com

## **Pleasure to be in Kyoto**

 Always a pleasure to visit Japan
Thanks to IEE Japan, especially Professor Kenichi Matsui for including me on the program

# My main message

 Why future growth of renewable energy resources – broadly accepted as a major paradigm shift in the electricity sector – cannot be achieved without a more accommodating, more robust, and more capable grid

The term "smart grid" gets in the way

# **Proposed outline**

- First: What paradigm shift?
- Second: What new demands on old grid?
- Third: What implementation challenges remain?

## Smart Grid Nov 2011



## First What paradigm change?

- 1. More reliable grid
- 2. Better balancing of supply & demand in real time
- 3. Integrating intermittent renewable energy
- 4. Accommodating distributed generation
- 5 Two-way conduit connecting loads to resources
- 6. Support "prices-to-devices" revolution

## Aug 03 Northeast Blackout Need a more reliable grid



#### Better balancing of load/generation CA's summer peaks are aggravated by flat pricing



Source: David Hungerford, CEC

### 80% by 2050! German target post Fukushima



## **Distributed generation** California Gov. envisions 12 GW of DG by 2025

#### **Residential Retrofit**



**Commercial & Public** 



#### **New Production Homes**



#### **Power Plants**



## **Zero Net Energy**

Grid as two-way conduit connecting loads to resources



# **Prices-to-devices**

Delivering smart prices to smart devices



Source: A. Faruqui, Brattle Group, Aug 2010

## **664 TWh EE potential** EPRI claims 14% energy <u>reduction</u> possible by 2030



Source: A. Faruqui, Brattle Group, Aug 2010

## **Demand Response**

As much as 20% of US peak load may be managed by DR



## Second New demands on old grid

- Existing grid not capable of handling new requirements
  - Reliability
  - Real-timer balancing
  - Renewable integration
  - Distributed generation
  - Connecting loads & resources as a "conduit"
  - Prices-to-devices

## Balancing in real time Based on simulated CA data for 25 July 2012, MW



Source:

#### Wind not available when needed CA wind capacity during all-time summer peak load in 2006



Source:

# Think of it as massive battery

#### Or DG on wheels



## Third Implementation challenges remain

- Enormous up-front costs, elusive distant gains
  - How do we finance, how do we distribute pains/gains?
- Investment, regulatory & policy misalignments
  - Utilities, are by and large, heavily regulated & slow to act
- Technology a lot more is expected
  - Rapidly evolving on multiple fronts
- Integration
  - Getting various components to "synergize" is major challenge
- Implementation & execution
  - What is easy on paper is often difficult in practice
- Managing public expectations
  - Many more painful lessons to be learned along the way



# Few take away points

- Current grid may <u>not</u> be smart but ain't dumb
  - Considered a significant "engineering achievement"
- Rapid progress on multiple fronts
  - Ample funding, R&D and entrepreneurial zest
- Expect more setbacks/surprises
  - Regulators reluctant to mandate dynamic pricing
  - Small but vocal opposition to smart meters, data privacy, etc
  - No panacea, but a critical step in right direction
    - Driven by desire for cleaner/greener/more efficient future



## Most likely NOT used

# **RPS mandates in WECC**



Source: Black & Veatch

# US wind

US wind capacity, annual & cumulative, GW



Source: 2010 Wind Technologies Market Report, Ryan Wiser and Mark Bolinger, Lawrence Berkeley National Laboratory, June 2011

# **Rising double digits**

Wind generations as % of total electricity consumption



Source: 2010 Wind Technologies Market Report, Ryan Wiser and Mark Bolinger, LBL, June 2011

#### Smart Grid It is contagious



Source: Smart from the start, PwC, 2010

#### Renewables are for real SunPower claims it can install 1 MW per day



## **EV** Penetration

Alternative projections of # EVs on PG&E system



#### EVs massive load on network A fast charging EV more than an entire house load

Customers will prefer a 240V charge to shorten recharge times PEV charging is a large load for PG&E customers, comparable to average peak summer load of a single home



Source: http://www.nissanusa.com/leaf-electric-car#/charging, August 14, 2009

# Will EVs fry the grid?

EV charging must be strictly curtailed during peak periods





#### No more power plants? Texas ACEEE study, Mar 2007



# California keeps it flat Per capita electricity consumption



Source: A. Faruqui, Brattle Group, Aug 2010

## Costs and perhaps benefits? EPRI study Apr 2011

#### Summary of Estimated Cost and Benefits of the Smart Grid

|                         | 20-Year Total<br>(\$billion) |  |
|-------------------------|------------------------------|--|
| Net Investment Required | 338 - 476                    |  |
| Net Benefit             | 1,294 - 2,028                |  |
| Benefit-to-Cost Ratio   | 2.8 - 6.0                    |  |

Source: Estimating the Costs and Benefits of the Smart Grid, EPRI, April 2011

# The costs

#### EPRI study Apr 2011

Total Smart Grid Costs

| Costs to Enable a Fully Functioning Smart Grid (SM) |         |         |  |  |
|-----------------------------------------------------|---------|---------|--|--|
|                                                     | Low     | High    |  |  |
| Transmission and substations                        | 82,046  | 90,413  |  |  |
| Distribution                                        | 231,960 | 339,409 |  |  |
| Consumer                                            | 23,672  | 46,368  |  |  |
| Total                                               | 337,678 | 476,190 |  |  |



Source: Estimating the Costs and Benefits of the Smart Grid, EPRI, April 2011

## And the benefits

#### EPRI study Apr 2011

Estimated Benefits of the Smart Grid

| Attribute       | Net Present Worth<br>(2010) \$B |      |  |
|-----------------|---------------------------------|------|--|
|                 | Low                             | High |  |
| Productivity    | 1                               | 1    |  |
| Safety          | 13                              | 13   |  |
| Environment     | 102                             | 390  |  |
| Capacity        | 299                             | 393  |  |
| Cost            | 330                             | 475  |  |
| Quality         | 42                              | 86   |  |
| Quality of Life | 74                              | 74   |  |
| Security        | 152                             | 152  |  |
| Reliability     | 281                             | 444  |  |
| Total           | 1294                            | 2028 |  |



Source: Estimating the Costs and Benefits of the Smart Grid, EPRI, April 2011

#### Exponential PV growth Customer installed PVs on PG&E system 1,400 MW by 2015

Cumulative Capacity of NEM (MW, CEC AC) Interconnected with PG&E Grid\*



\* Includes all NEM projects (PV, W, MT); excludes Non-Export projects

40% of US solar PV interconnections are in PG&E's service territory

# 5. The cheapest kWh is the one you don't use



\* Includes current federal & state level incentives, natural gas price is assumed at \$4.50/MMBTU Source: US Renewable Energy Quarterly Report, ACORE, Oct 2010

## More renewable generation

#### US non-hydro generation 1990-2035, in bkWh



#### non-hydropower renewable generation billion kilowatthours per year

Source: EIA's Annual Energy Outlook 2011, 16 Dec 2010

### California going low-carbon Don't count on nuclear, CCS, cap-&-trade, or market signals



Source: Black & Veatch

## **Numbers talk**

Annual and cumulative installed wind capacity, in MW

| Annual Capacity<br>(2010, MW) |        | Cumulative Capacity<br>(end of 2010, MW) |         |
|-------------------------------|--------|------------------------------------------|---------|
| China                         | 18,928 | China                                    | 44,781  |
| U.S.                          | 5,113  | U.S.                                     | 40,267  |
| India                         | 2,139  | Germany                                  | 27,364  |
| Germany                       | 1,551  | Spain                                    | 20,300  |
| U.K.                          | 1,522  | India                                    | 12,966  |
| Spain                         | 1,516  | France                                   | 5,961   |
| France                        | 1,186  | U.K.                                     | 5,862   |
| Italy                         | 948    | Italy                                    | 5,793   |
| Canada                        | 690    | Canada                                   | 4,011   |
| Sweden                        | 604    | Portugal                                 | 3,837   |
| Rest of World                 | 5,205  | Rest of World                            | 28,371  |
| TOTAL                         | 39,402 | TOTAL                                    | 199,513 |

Source: 2010 Wind Technologies Market Report, Ryan Wiser and Mark Bolinger, Lawrence Berkeley National Laboratory, June 2011

## **Renewable Growth**

Reproduce graph fm BP, page 40, LEFT chart from source below http://www.bp.com/liveassets/bp\_internet /globalbp/STAGING/global\_assets/downl oads/O/2012\_2030\_energy\_outlook\_boo klet.pdf

## **Renewable portfolio standards**

#### US states with mandatory targets



\* Florida now has a 20% RPS by 2020 not reflected in the map. There may be other states as well that have adopted mandates since the map was published Source: Edison Electric Institute, 8 Apr 08

## **US wind contribution**

Contribution of wind as % of new capacity additions, 2000-10



Source: 2010 Wind Technologies Market Report, Ryan Wiser and Mark Bolinger, Lawrence Berkeley National Laboratory, June 2011