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Abstract 

Cumulative capacity and investment in research and development (R&D) are important factors for cost 

reduction in solar energy systems. In this research, I examine the effect of learning-by-doing and learning-by- 

research using recent data (2001–2010) for solar photovoltaic (PV) systems in 12 countries. I use the panel 

estimation method to control the individual country characteristics. From the analysis, I show that the 

learning-by-doing and learning-by-research rates have reduced over time. This means that a reduction in the 

cost of PV systems can only be brought about by adding solar PV capacity and making more R&D 

investments. From the panel analysis, I also show that the countries share common trends in learning-by-doing 

and learning-by-research. 

 

1. Introduction  

Cumulative capacity and investment in research and development (R&D) have long been considered as 

important factors for cost reduction in solar energy systems; however, cost reduction also includes many other 

factors. The learning curve method can be used to measure the effects of learning-by-doing on the one hand 

and learning-by-research on the other. Learning curves describe how specific investment costs for a given 

technology are reduced through one or more factors representing the accumulation of knowledge and 

experience related to R&D expenditures and the production and use of that technology (Kahouli-Brahmi 

(2008).  

Many studies have used the learning curve method to forecast cost reduction relative to the cumulative 

capacity of a technology and R&D investment made in it(Maya 2006; Söderholm and Sundqvist 2007; Ek and 

Söderholm 2010; Qiu and Anadon 2011). Renewable energy, in particular, has been used in conjunction with 

learning curve methods for several reasons, the most significant being the availability of sufficient data 

allowing for statistical analysis and the continued expectation of technology development. At an initial stage 

of the analysis, the one-factor model, which considered the cumulative capacity alone, was widely 

used(Klaassen, Miketa et al. 2005; Söderholm and Sundqvist 2007; Winkler, Hughes et al. 2009; Kim and 

Chang 2012). However, with an increase in R&D-related investment by the government, the two-factor model 

is more commonly used now. The two-factor model explains the cost reduction of technology in terms of 

learning-by-doing and learning-by-research. However, there are some limitations in previous studies, as most 

of them use data preceding the year 2000. After 2000, the world renewable energy industry developed rapidly. 

For example, the cumulative capacity of solar energy was 103 MW in 1992 and 678 MW in 2000. In 2010 

alone, it increased by 34,953 MW, or about 339 times the level in 1992 and 52 times that in 2000(IEA 2010). 

Consequently, there is a need to update research using this data. Additionally, while using the R&D variable, 

most studies employed knowledge stock as the representative data for R&D investment. However, there is 

lack of understanding concerning R&D variables in the learning curve.  

The purpose of this research is to show the effect of learning-by-doing and learning-by-research 

considering recent data in the solar photovoltaic (PV) energy sub-sector. For my analysis, I use the panel 

estimation method, using data from 12 countries. I control the characteristics of individual countries in order 

to gain distinct perspectives for learning-by-doing and learning-by-research. I also develop three kinds of 

R&D variables; pure R&D, accumulated R&D, and knowledge stock. I then examine the importance of 

choosing the R&D variables in the two-factor experience curve model. 

The paper proceeds as follows. In Section 2, I analyze the methodological aspects of technological learning 

concepts and previous studies. I also provide the estimation equation. In Section 3, I present the empirical 

framework for estimation, the empirical results, and the discussion. In Section 4, I discuss the results and draw 

conclusions. 
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2. Method 

(1) Literature review 

In this Section, I introduce the concept of technological learning and the learning curve methodology.  

Technological learning—alternatively, the learning effect—is a concept that permits the evaluation of the 

decrease in unit production costs when the cumulative production increases (Kahouli-Brahmi 2008). 

Technological learning plays a very important role in cost reduction of newly developed technologies(Kobos, 

Erickson et al. 2006; Sagar and van der Zwaan 2006). Innovations could result from technological learning. 

There are many aspects of technological learning (Table 1): learning-by-doing, learning-by-researching, 

learning-by-using, learning-by-interacting and economies of scale (Grübler and Messner 1998; Junginger, 

Faaij et al. 2005; Junginger, de Visser et al. 2006). Measuring technological learning requires the 

quantification of various factors. However, these factors should not be treated as separate entities, as one 

factor could have a bearing on others, and vice versa. Therefore, studies have primarily concentrated on 

learning-by-doing as the comprehensive factor. They assume that each idea, after all, produces a learning-by-

doing effect, and in turn leads to technological innovation 

Additionally, with recent improvement in R&D, attention is now being focused on the need to consider 

learning-by-doing and learning-by-researching separately (Watanabe, Wakabayashi et al. 2000; Klaassen, 

Miketa et al. 2005). R&D is unique in that it has a spillover effect. To improve R&D development, the 

government invests a huge amount of money in R&D. Hence, as suggested by the studies, using the 

mechanism of separately considering the rate of learning-by-doing and learning-by-research could benefit the 

technological learning process.  

 

Table 1. Mechanisms of technological learning 

 Definition Researchers 

Learning-

by-doing 

Repetitive manufacturing tasks involve an improvement in the production 

process, which can also be supported by a number of forces such as labor 

efficiency increases, new processes, changes in production methods, changes in 

the administrative structure, etc. 

Arrow 

(1962); 

Bodde 

(1976) 

Learning-

by-

researching 

The R&D expenditure acts as a learning mechanism that allows the firm to 

identify and exploit the knowledge propagated in its environment. Learning-by 

researching thus represents improvements related to the innovation process and 

the absorptive capacity of the firm. 

Cohen and 

Levinthal 

(1989) 

Learning-

by-using 

When the product is introduced in the market, the market provides 

opportunities for learning-by-using. It is crucial for the development of the 

product since this development cannot be completely achieved inside factories 

and/or research laboratories. The user’s feedback becomes an important source 

of technological learning for the firm, and over time, lead to cost reductions.  

Rosenberg 

(1986); 

Criqui et al. 

(1998) 

Learning-

by-

interacting 

Interactions among various actors like research laboratories, industry, end-

users and political decision-makers, enhance the diffusion of knowledge. 

Network relationships play a crucial role in achieving efficient product 

improvements and increasing the knowledge base, as the firm is able to 

exchange information about product characteristics and user requirements 

generated during the learning-by-doing and learning-by-using processes. 

Learning-by-interacting allows the firm to benefit from external sources of 

learning and is largely associated with the increasing diffusion of technology. 

Lundvall 

(1988); 

Habermeier 

(1990) 

Economies 

of scale 

The unit cost curve as the output increases translates into cost advantages a 

firm obtains due to expansion. Economies of scale are also considered to be a 

learning mechanism that takes place at the mass production stage. Economies 

of scale encourage large-scale production that in turn promotes learning 

effects. 

Kahouli-

Brahmi 

(2008) 

Note: reorganizing based on Kahouli-Brahmi (2008) 
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As mentioned previously, the learning curve method has been used to measure learning-by-doing and 

learning-by-research(van der Zwaan and Rabl 2003; Söderholm and Sundqvist 2007; Smit, Junginger et al. 

2007; Qiu and Anadon 2011). Learning curves describe how the specific investment costs of a given 

technology are reduced through one or more factors representing the accumulation of knowledge and 

experience related to R&D expenditures, and the production and use of that technology (Kahouli-Brahmi 

2008). The learning curve model is of two types: the one-factor model and the two-factor model. The so-

called one-factor learning curve considers the cumulative installed capacity or production of a certain 

technology (Neij 1999; Karin 2002; Schaeffer, Alsema et al. 2004; Wand and Leuthold 2011), while the two-

factor model also factors in cumulative R&D expenditures or knowledge stock with regard to that technology. 

Therefore, it follows that the one-factor model is used to examine learning-by-doing alone, while the two-

factor model allows one to study learning-by-doing and learning-by-research together. 

Cost reduction in renewable energy has interested many researchers using the learning curve for several 

reasons (Schaeffer, Alsema et al. 2004). The history of renewable energy stretches back several decades. This 

means there is sufficient data for statistical analyses. Furthermore, renewable energy technologies consist of 

many components. Relating learning-by-experience in PV systems, for example, would lead to learning at the 

component level. This could provide insights into how experience curves work, which could then be used 

towards a policy analysis. Also, renewable energy is seen as a ―promising technology‖ in the framework of 

transition to a cleaner energy system in the longer term, and is therefore a subject of active energy policy 

interventions in many countries (Schaeffer, Alsema et al. 2004).  

Table 2 presents some notable studies using learning curve estimation conducted for renewable energy 

technologies. The studies can be divided based on the type of model used and period of analysis. In the earlier 

years, researchers used the one-factor model (Neij 1999; Neij, Andersen et al. 2003; Junginger, de Visser et al. 

2006; van den Wall Bake, Junginger et al. 2009). However after Watanabe, Wakabayashi et al. (2000) 

introduced the two-factor model, many researchers employed it in their studies of learning curve estimations 

for renewable energy technologies (Klaassen, Miketa et al. 2005; Maya 2006; Söderholm and Sundqvist 2007; 

Ek and Söderholm 2010; Qiu and Anadon 2011). The estimation result of the one-factor model served as a 

base for economic evaluation while forecasting cost reduction(Zangwill and Kantor 2000; Duke 2002; Weiss, 

Junginger et al. 2010). However, increasingly, with developments in the learning curve method, researchers 

have started opting for the two-factor model, as it improves the reliability of estimation methods. 

Kahouli-Brahmi (2008) mention that despite little information about the underlying ―micro-channels‖ 

through which R&D expenditures affect cost, cost reductions that result from R&D are quite distinct from 

those attributable to capital investment. New R&D expenditures allow the firm to better handle the economic 

and technological characteristics of the new technology, and in doing so, to construct its own knowledge stock. 

New R&D expenditure is also bound to increase production levels, and further stimulate the learning-by-doing 

process. Thus, new R&D investments support the learning-by-researching process, which in turn supports 

technological innovation in the production process. Moreover, the production process exerts a feedback effect 

on R&D activities, and by extension, on the learning-by-researching rate (Watanabe et al., 2000). 

Knowledge stocks usually serve as representative data for R&D investment. However, researchers have 

varying opinions about how knowledge stock should be calculated. Klaassen, Miketa et al. (2005) calculated 

the knowledge stock with lag 1, while Kobos, Erickson et al. (2006) used lag 5. Furthermore, there is a lack of 

agreement on the depreciation rate to be employed. This prompted me to develop three kinds of R&D 

variables and use different lag lengths for this study. 

The literature review also revealed another interesting issue. While a considerable number of studies have 

been conducted in this domain, the data period and number of countries analyzed for a particular renewable 

energy technology are nevertheless limited. Most of the recent studies use data preceding 2000. Data from 

Japan, Spain and Germany has been used for solar energy technology, while Denmark and England provide 

data for wind energy studies. With the increase in the cumulative capacity of renewable energy technologies 

(specifically solar PV) post-2000, I believe it is important to incorporate this data into the two-factor model. 
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Table 2. Some notable studies using learning curve estimation conducted for 

renewable energy technologies 

Factor Researchers 

Renewable 

energy 

technology 

Period Country 

One-

factor 

model 

van den Wall Bake, Junginger et al. 

(2009) 

Bio 

(ethanol) 
1974–2004 Brazil 

Junginger, de Visser et al. (2006) Bio 
1990–2002 

1975–2002 

Sweden (CHP) 

Denmark (biogas plant) 

Junginger, Faaij et al. (2005) Bio 1981–2003 Sweden 

Goldemberg, Coelho et al. (2004) Bio 1980–2002 Brazil 

Wand and Leuthold (2011) Solar 2009–2030 Germany 

Gregory F (2006) Solar 1975–2001 World 

van der Zwaan and Rabl (2004) Solar 1976–1996 - 

van der Zwaan and Rabl (2003) Solar 1976–1999 - 

Neij, Andersen et al. (2003) Wind 1981–2000 
Denmark, Germany, 

Sweden 

Junginger, Faaij et al. (2005) Wind 
1992–2001 

1990–2001 

UK 

Spain 

Karin (2002) Wind 
1983–1999 

1991–1999 

Denmark 

Germany, UK 

L (1999) Wind 1986–1997 Denmark 

Kim and Chang (2012) Renewable 2001–2010 Korea 

Colpier and Cornland (2002) CCGT* 1980–1997 North America, Europe 

Winkler, Hughes et al. (2009) Renewable 2003–2050 South Africa 

Two-

factor 

model 

Qiu and Anadon (2011) Wind 2003–2007 China 

Ek and Söderholm (2010) Wind 1986–2002 
Denmark, Germany, 

Spain, Sweden, UK 

Söderholm and Sundqvist (2007) Wind 

1986–1999 

1990–1999 

1991–2000 

Denmark 

Germany, Spain 

UK 

Klaassen, Miketa et al. (2005) Wind 1986–1999 
Denmark, Germany, 

UK 

Maya (2006) Solar, wind 
1992–2000 

1987–2000 

USA, Denmark, 

Germany (wind) 

Kobos, Erickson et al. (2006) Solar, wind 
1975–2000 

1981–2000 
World 

Watanabe, Wakabayashi et al. (2000) Solar 1974–1995 Japan 

*: Combined Cycle Gas Turbine 

 

 

 (2) Two-factor model 

The two-factor learning curve (also known as ―progress function‖) quantifies the magnitude of cost 

reduction engendered by the cumulative output and R&D increase (Kahouli-Brahmi 2008). The equation for 

the two-factor learning curve can be described as: 

 

                      ,    (1) 
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where          is price of a technology per unit (specific cost) in US$ (2010) per kilowatt (KW),    

is the cumulative capacity in MW,    is the R&D-based knowledge stock in US$ (2010),    is the 

learning-by-doing index,    is the learning-by-researching index, A is the specific cost at unit cumulative 

capacity and unit knowledge stock in US$ (1990).  

From Equation (1), we can determine the progress rate (  ) or the learning rate (  ). 

 

        ,          (2) 

 

                         (3) 

 

The progress rate is the rate at which the cost declines each time the cumulative production doubles. For 

example, a progress rate of 90% means that costs are reduced to 90% of their previous level after doubling 

cumulative production. It also means that the learning rate is 10%, and that costs decrease by 10%. The 

learning curve is generally estimated under its logarithmic functional form as seen in Equation (4). 

 

                                   (4) 

 

Generally, ordinary least squares (OLS) methods are used for learning curve estimation. However, OLS 

methods suffer from some limitations, for example, spurious regression. Moreover, Kahouli-Brahmi (2008) 

mentioned that with an estimation based on single country data, country specifications are included in the 

estimated parameter. Further, there is no way to distinguish them from the learning parameter. With fixed-

effect model formulation of panel data, we can eliminate unobserved country-specific variations from the 

estimation of learning parameters, regardless of the selection of countries. By doing so, we can obtain more 

robust estimations of learning. Consequently, in this study, I estimate Equation (4) using a panel data set of 12 

countries—Australia, Canada, Denmark, Germany, France, United Kingdom, Italy, Japan, Korea, Portugal, 

Sweden, and Unites States. 

I develop three sets of R&D data to examine the differences in the estimation results depending on the 

choice of the R&D variable and lag lengths. Kobos et al. (2006) conducted sensitivity analysis on time lag 

assumption ranges between 3 to 5 years. Klaassen et al. (2005) discovered that compared to the industrial 

scale, shorter time lags (2 years) are more appropriate for the uptake of energy (such as solar) at the smaller 

scale. I thus chose a time lag range between 1 to 3 years for accumulated R&D and knowledge stock. I set the 

depreciation factor at 3%, following the observations made by Klaassen et al. (2005) and Kobos (2000). 

The fist R&D data is pure R&D investment at time  ,      

 

                   (5) 

 

The second R&D data is cumulative R&D without depreciation,      

 

                
 
                 (6) 

 

The third R&D data is knowledge stock with depreciation assumed at 3%,      

 

                             ,   (7) 

      

 

where   is the annual knowledge stock depreciation rate (3%); and   is the time lag in years (1 or 2, or 

3). 
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3. Estimation results 

3.1 Data description 

Table 3 summarizes the key characteristics of the variables of 12 countries. To select the data, I reviewed 

previous studies and related references. The period of data spans from 2003 to 2010. The majority of data 

shows that the standard deviation is larger than the mean. This means that there are large differences in the 

data for the time period and countries in question. 

 

Table 3. A basic statistical analysis of the selected data (2003-2010) 

 Mean Standard deviation Country 

Cost of PV 

(US$/W, 2010) 
5.71 2.47 

Australia (AUS), Canada 

(CAN), Denmark (DNK), 

Deutschland (DEU), France 

(FRA), United Kingdom 

(GBR), Italy (ITA), Japan 

(JPN), Korea (KOR), 

Portugal (PRT), Sweden 

(SWE), Unites States (USA) 

Cumulative capacity 

(MW) 
817.05 2224.05 

RD1 

(US$, million) 
39.16 59.19 

RD2 

(US$, million) 
422.13 2244 

RD3 

(US$, million) 
2459.67 3495.95 

Note: (1) RD2 and RD3 data are corrected from 2001 to allow consideration of lag. 

(2) RD2 and RD3 data are for lag 0. 

 

The cost is the dependent variable and the most important element in the learning curve. However, the cost 

of a PV system depends on many factors, such as the photovoltaic module, inverters, storage batteries, 

construction, labor and so on. Some factors influence not only the technological development, but also social 

conditions. Therefore, it is logical to use the module price as a representative cost of a PV system (as done by 

many studies in this field). The module price is almost half the production cost. I corrected the data using the 

Photovoltaic Power System Program Annual Report of the International Energy Agency (IEA PVPS), a 

collaborative research and development agreement established in 1993 within the Agency.  

Figure 1 presents the trend in module price from 2003 to 2010. The module price decreased during the 

analysis period. The weighted average price almost halved in the period under consideration—from 

US$ 6.59/W in 2003 to US$ 3.91/W in 2010. This implies that the chosen analysis period is acceptable for the 

estimation of the learning curve. 

The cumulative installed capacity in PV was also corrected using the IEA’s PVPS Annual Report. As seen 

from Figure 1, it increased gradually for the period under review—from 1,707 MW in 2003 to 29,635 MW in 

2010. This translates to an average increase of 3,989 MW/year. Notably, in the case of Germany, there were 

massive increases in the cumulative installed capacity owing to the enthusiastic response to its feed-in tariff 

(FIT) policy. The trend for cumulative installed capacity in PV therefore opposes that seen for cost reduction. 

This means that the cumulative installed capacity in PV could explain the reduction in PV module price. 

I corrected the R&D variables using IEA’s Energy R&D Database on PV Systems (code 312). Figure 2 

shows the trends in R&D variables. Pure R&D or public R&D expenditure does not show a constant increase. 

Some countries reduced public expenditure in R&D for PV systems in certain years, such as Canada and the 

USA. Accumulation of R&D and knowledge stock from R&D expenditures showed similar patterns. However 

knowledge stock is smothering than accumulation of R&D.  
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Figure 1. Indicative module price and cumulative installed solar PV capacity (2003–

2010) 

  
 

Figure 2. R&D variables (2001–2010) 

 
 

3.2. Empirical results 

There are seven models, depending on the type of R&D variable and lag lengths. Model 1 uses the pure 

R&D variable (RD1). Models 2, 3, and 4 use accumulated R&D expenditure (RD2) with lags 1, 2, and 3. 

Models 5, 6 and 7 use the knowledge stock from R&D variable (RD3) with lags 1, 2, and 3.  

Table 4 depicts the results of the learning curve using the panel data set of 12 countries for the period 

2003–2010. F-statistics provide the significance of the overall estimation result. All models reject the null 

hypothesis that the three independent variables are equal to zero. This means that all three types of R&D 

variable models are statistically significant. 

The estimators of cumulative PV capacity and R&D variables carry the negative sign for all models. It is 

an acceptable result, in that it shows that the variables lead to a cost reduction. The R&D variable is not 

significant within 10% of the significant level in Model 1 alone, which uses the pure R&D variable. Except 

for Model 1, the R&D variables are statistically significant in the remaining six models.  

The estimators of cumulative PV range from -0.145 to -0.159. The ranges are similar with the exception of 

Model 1, where the R&D variable is not significant and the accumulation estimator of cumulative capacity 

variable is -0.206. I also compare these results with those of previous studies (analysis period before 2000). 

The estimator of cumulative capacity is smaller than that found in previous studies that used the one-factor 

model, and ranged from -0.2 to -0.31. In studies using two-factor models (Maya (2006) and Kobos et al. 

(2002)), the value ranged from -0.19 to -0.294. This confirms a decreasing trend for cumulative capacity, 

which may be attributed to the fact that technology development in this case has reached a plateau. In the early 

days of technology development, it is easy to decrease the cost of production through accumulation of human 
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capital, because there are many inefficient factors. However, in the developed stage, it is not as easy to reduce 

these inefficient factors, and hence, it becomes increasingly difficult to reduce the cost.  

The estimator of R&D variable ranges between -0.133 and -0.227. It shows the extent of elasticity between 

the R&D variables and lags. Pure R&D is not significant, but RD2 and RD3 are statistically significant. It 

means that the accumulation of R&D expenditure as well as knowledge stock from R&D expenditures have a 

long-term effect. Additionally, the estimators for RD2 are larger than that for RD3. This is probably because I 

consider a depreciation rate for the knowledge stock, and therefore, the effect of cost reduction appears 

smaller than that of accumulated R&D expenditure. However, it is not possible to discern which variable is 

more appropriate from the result. For RD2, the greater the lag, the smaller the cost reduction effect. On the 

other hand, the RD3 models show the opposite trend. Kobos et al. (2006) reported the elasticity of R&D 

ranging from -0.223 to -0.409, which is larger than that seen in this study. This means that the cost reduction 

effect has decreased from the viewpoint of accumulation of R&D expenditure as well as the knowledge stock 

from R&D expenditure.  

Sigma_u and sigma_e represent the estimators of standard deviation error terms    and    . The rho 

depicts the ratio of fraction of variance due to    from the total variance.  

 

      
   

 

   
     

      (8) 

 

If the value of rho is close to 1, it is important to consider the individual characteristic that is time-invariant. 

The rho statistic ranges from 0.79 to 0.90. So I the considering with group estimation is acceptable in PV price 

reduction. It means that the decrease in the solar cost is homogeneous. Therefore, learning-by-doing and 

learning-by-research display a common trend.  

 

Table 4. Estimation results of the learning curve 

 
(1) (2) (3) (4) (5) (6) (7) 

R&D 

variable 
RD1 

RD2 

(lag 1) 

RD2 

(lag 2) 

RD2 

(lag 3) 

RD3 

(lag 1) 

RD3 

(lag 2) 

RD3 

(lag 3) 

CC 
-0.206*** 

(-7.36) 

-0.145*** 

(-4.54) 

-0.153*** 

(-4.94) 

-0.158*** 

(-5.03) 

-0.159*** 

(-4.76) 

-0.153*** 

(-4.41) 

-0.149*** 

(-4.25) 

R&D 
-0.203 

(-0.66) 

-0.227*** 

(-2.94) 

-0.191*** 

(-2.78) 

-0.183*** 

(-2.52) 

-0.133** 

(-2.2) 

-0.149** 

(-2.33) 

-0.156** 

(-2.38) 

A 
2.620** 

(-23.4) 

3.389*** 

(-11.75) 

3.214*** 

(-13.11) 

3.179*** 

(-12.47) 

3.190*** 

(-10.96) 

3.241*** 

(-10.89) 

3.246*** 

(-10.88) 

F-statistics 

(P-value) 

40.62 

(0.000) 

54.24 

(0.000) 

53.25 

(0.000) 

48.43 

(0.000) 

50.21 

(0.000) 

47.48 

(0.000) 

43.66 

(0.000) 

R^2 0.18 0.14 0.15 0.15 0.17 0.16 0.15 

sigma_u 

sigma_e 

rho 

0.48 

0.25 

0.79 

0.68 

0.23 

0.90 

0.64 

0.23 

0.88 

0.64 

0.23 

0.88 

0.57 

0.24 

0.86 

0.59 

0.24 

0.86 

0.61 

0.24 

0.87 

Note: (1) The PV module price is the dependent variable. 

(2) *, **, *** represent 10%, 5%, and 1% rejection respectively within the significant level. 

(3) Values within ―( )‖ represent t-statistics. 
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From the estimation result, we can calculate the learning-by-doing rate and the learning-by-research rate 

(Figure 3). The estimator of R&D is insignificant for pure R&D. Therefore, I calculate the learning rate for 

accumulated R&D and knowledge stock only. The learning-by-doing rate for accumulated R&D in Model 2 is 

9.56. This means that the cost of a PV module decreases by 9.56% when the cumulative installed capacity for 

solar PV doubles. Similarly, the rate of learning-by-research is 14.59, which means that there would be a cost 

reduction of 14.59% in the event accumulated R&D expenditure doubles. The models of accumulated R&D 

show that the learning-by-research rate is higher than the learning-by-doing rate. However, the models of 

knowledge stock show that the learning-by-doing rate is slightly higher or lower than the learning-by-research 

rate. This means that the selections of R&D variable and lags have an effect on the learning rates. 

 

Figure 3. Learning rates of learning-by-doing and learning-by-research 

 
 

4. Discussion and conclusions  

In this research, I developed a more recent (post-2000) database for PV module prices, cumulative installed 

capacity of solar PV, and R&D investment. Using this data, I analyzed the effect of cumulative installed 

capacity and R&D investments on cost reduction. I applied the panel estimation method using data for 12 

countries and different R&D variables.  

The results can be summarized as follows. The learning rate for solar PV renewable energy technology has 

decreased after 2000. The estimator of the cumulative capacity and R&D variables showed a decrease when 

compared to previous studies that utilized data from before 2000. The reduction is larger for the learning-by-

doing rate. The role of cumulative capacity in cost reduction also decreased, and as a result, R&D could be a 

more effective instrument for enabling cost reduction.  

Learning rates also differed depending on the selection of R&D variables. Pure R&D investment turned out 

to be insignificant, while accumulated R&D and knowledge stock were significant. However, it was not 

possible to discern which variable of the two was more appropriate for experience curve analysis. 

Nevertheless, it is possible to conclude that R&D exerts a long-term effect. 

From the panel analysis, I also showed that the countries share common trends in learning-by-doing and 

learning-by-research. The panel analysis controls the individual effect in PV cost reduction, and therefore, 

employing the panel analysis was a better option as compared to OLS estimation. The result implies that R&D 

investment and cumulative installed solar PV capacity have spillover effects on the reduction of PV cost 

globally.  
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