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Abstract

This paper examines the non-stationary and non-linear features of the non-renewable resource

markets: the crude oil (the US West Texas Intermediate and the UK Brent), bituminous coal and

natural gas. In particular, we achieve this goal by using the Markov switching unit root regression.

This approach is attractive because it allows price to switch between stationary and non-stationary

regimes (partial non-stationarity). It also allows price to switch between two stationary regimes

(varied stationarity) or to switch between two non-stationary regimes. The results of a range of

non-linear tests show that the independently and identically distributed (i.i.d.) hypothesis or the

random walk hypothesis is untenable for the non-renewable resource prices. The results from

Markov regression indicate that, in the cases of the US West Texas Intermediate, the UK Brent

as well as bituminous coal, prices are characterized by the local non-stationarity in both regimes,

and therefore non-stationarity sustains. For price of natural gas, it is characterized by partial non-

stationarity. The posterior probabilities stem from the Markov switching unit root regresion are

discussed in the text.
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1 Introduction

Testing for a unit root or the non-stationarity hypothesis in asset prices has attracted substantial

interest in the empirical finance literature ever since the studies of Fama and French (1988a, 1988b),

Lo and MacKinlay (1988) and Poterba and Summers (1988) were published. The reason for this

is that if there is a unit root in the asset price and error term is assumed be an independent and

identical distribution (hereafter i.i.d.), then it implies that asset returns cannot be predicted by

previous prices changes.1 Therefore, given only past price and return data, the current price is the

best predictor of the future price, and the price change or return is expected to be zero. This is the

essence of the weak-form efficient markets hypothesis (hereafter WEMH). However, if asset prices

follow a mean reverting or stationary process, then there exists a tendency for the price level to

return to its trend path over time and investors may be able to forecast future returns by using

information on past returns.

In natural resource markets, examining whether price movements exhibit a unit root and fore-

casting the future level of prices and their fluctuations have also attracted substantial research

over the past two decades. Natural gas, historically a substitute for refined petroleum products,

is considered to have a price movement closely aligned to that of crude oil. Although oil and nat-

ural gas prices might exhibit seemingly independent movements, a long-run linear relationship

still exists between them. For example, Villar and Joutz (2006), Asche et al. (2006), and Brown and

Yücel (2008) all found that the oil price and natural gas price are cointegrated. Brown and Yücel

(2008), however, indicate that the cointegrated relationship between oil and natural gas prices is

conditioned by weather, seasonality, etc. Coal prices, by contrast, are less volatile as compared to

those of crude oil and natural gas. Nonetheless, the movement of coal prices is found to follow a

stationary process (Lee et al., 2006).

Three important, albeit somewhat disappointing, features characterize previous studies on the

unit root hypothesis. The findings are mixed depending on the different markets, frequency, time

period and methodologies employed in previous studies, which means there is no corroborative

conclusion vis-à-vis the stationarity property for natural resource prices. Second, the majority

of these earlier studies apply the traditional method in testing for the null hypothesis of a unit

root of the asset prices. It is well-known that the traditional unit root test is powerless if the true

data generating process of a series exhibits structural breaks (Perron, 1989). Therefore, a few of the

studies, e.g., Lee et al. (2006), Postali and Picchetti (2006), Maslyuk and Smyth (2008) and Narayan

1Rahman and Saadi (2008) emphasis the difference between unit root test and the random walk hypothesis. Tests

for the random walk hypothesis are concerned with the predictability of future price changes, which explains the need

for i.i.d. assumption. Unit root tests are designed to investigate whether a series is difference-stationary or trend-

stationary. Although share non-stationarity is a necessary prerequisite for the random walk hypothesis, it is not a

sufficient condition. That is to say, the random walk hypothesis is equivalent to the combination of the unit root and

i.i.d. assumption.

1



et al. (2008) adopt newly-developed unit root tests with structural breaks (Lee and Strazicich,

2003a, 2003b) to investigate the stationarity property of natural resource prices. Third, Recent

studies, e.g., Ewing et al. (2002), Kyrtsou et al. (2009) and Maslyuk and Smyth (2009), point out

that non-renewable resource prices should be specified as non-linear data generating processes,

implying that the conventional unit root test, which assume linear and systematic adjustment

with respect to stationarity, are misleading and indicating that the reliability of the findings from

existing studies is questionable.2

Testing for non-linearity or non-linear dependence for natural resource prices are of impor-

tance. If the non-linearity really exist in natural resource price, then this feature should be taken

into account in model specification at least. If not, it is expected to cause serious bias in forecast-

ing. In addition, the nonlinear feature of natural resource price has different impact on macroe-

conomic variables through transmission mechanism. However, testing for the null hypothesis of

the non-stationarity or the non-linearity of an asset price goes astray in different avenue in the lit-

erature. When testing for the non-stationarity of a series, the conventional linear unit root statistic

always ignores the property of the non-linearity and vice versa. This is because testing for the

properties of the non-stationarity and non-linearity of a series simultaneously involves tedious

non-standard distribution theory. This difficulty make analysts to avoid the problem by testing

the non-stationarity and non-linearity one by one.

The central aim of this paper is to examine the non-stationarity and non-linearity of the non-

renewable resource markets, i.e., the prices of the US West Texas Intermediate (WTI) and the UK

Brent crude oils, bituminous coal and natural gas. A key contribution of this research is that

we tackle the non-stationarity and non-linearity simultaneously based on the augmented Dickey-

Fuller (ADF) unit root testing within a Markov regime-switching framework. The Markov switch-

ing approach is in sharp contrast to existing studies of testing non-linearity and offers valuable

new insights into price behavior. These non-renewable resource prices are modeled as regime

dependent where episodes of stationarity or non-stationarity can be identified and analyzed. In

contrast, most existing studies compute a single test statistic for testing non-stationarity across the

entire study period. This approach can lead to a bias towards accepting the non-stationary null,

because there is no distinction between alternative regimes.

The remainder of this paper is organized as follows. Section 2 introduces the econometric

methodology that we employ, and Section 3 describes the data and the empirical test results.

Section 4 presents the conclusions that we draw from this research.

2For the benefit of readers, we summarize the recent contributions for testing non-stationarity and non-linearity of

natural resource prices after 2000 in Table 1. Readers are referred to reference cited in Lee et al. (2006) and Maslyuk and

Smyth (2009) for more studies published in pre-2000.
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Table 1: Selective papers on non-stationarity and non-linearity for natural resources after 2000

Studies Energy and Samples covered Methodology Results

Krichene (2002) natural gas and crude oil ADF unit root test unit root is acceptable

1918 to 1999

Abosedra (2005) crude oil spot and future prices ADF unit root test and spot and future prices have a unit root

January 1991 to December 2001 Phillips and Loretan (1991) non-linear future price tends to be

cointegration estimation semi-strongly efficient

Lee et al. (2006) 11 natural resource annual data Lee and Strazicih LM unit coal and gas are stationary

1870–1990 root test with breaks process with breaks

Postali and Picchetti annual oil price Lee and Strazicih LM unit oil price is stationary

(2006) 1861–1999 root test with breaks process with breaks

Maslyuk and Smyth WTI and Brent crude oil spot Lee and Strazicih LM unit WTI and Brent oil prices are characterized

(2008) and future prices, 1991–2004 root test with breaks by a unit root with breaks

Maslyuk and Smyth crude oil for 17 OPEC and non-OPEC Caner and Hansen (2001) non-linear crude oil is characterized threshold effect

(2009) countries, 1973–2007 unit root test and 11 of 17 has unit root

Tabak and Cajueiro WTI and Brent crude daily oil prices time-varying long-range dependence WTI and Brent oil markets are

(2007) 1983–2004 weak-form efficient market

Alvarez-Ramirez et al. Brent, WTI and Dubai crude oil prices Hurst exponent dynamics Brent, WTI and Dubai crude oil markets

(2008) 1987–2007 (detrended fluctuation analysis) are weak-form efficient market

Charles and Darné WTI and Brent crude oil daily a range of variance ratio Brent is WEMH

(2009) price, 1982–2008 tests WTI is not WEMH in 1994 to 2008

Lean et al. (2010) the WTI crude oil daily mean-variance (MV) and the spot and futures oil

January 1, 1989 to June 30, 2008 stochastic dominance (SD) markets are efficient

Alvarez-Ramirez et al. the WTI crude oil daily lagged detrended fluctuation the WTI oil price is not

(2010) January 1, 19896 to December 31, 2009 analysis (DFA) an efficient market
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2 Methodology

Let qt denote the logarithm of the, e.g. price of crude oil. The Markov Switching ADF (MS-ADF)

regression is obtained by running the following regression:

∆qt = αSt
+ φSt

qt−1 +
k

∑
j=1

γj,St
∆qt−j + ut, (1)

ut ∼ NID(0, σ2
St
), (2)

where ∆qt denotes the first difference of the crude oil price qt. µSt , φSt and γ1,St , ..., γk,St
are

regime-varying parameters, and ut is the innovation process with a regime-dependent variance-

covariance matrix σ2
St

. The unobservable state variable St follows a first-order, two-state Markov

Chain with the transition probability as follows:

pr(St = j|St−1 = i) = pij, (3)

where i, j = 0 or 1. The unconditional probabilities for state 1 and state 2 are w1 = 1−p22

2−p11−p22
and

w2 =
1−p11

2−p11−p22
, respectively.

An interesting feature of this model is that no assumption is needed to impose the stationarity

of either regime. Local stationarity in both regimes is confirmed if the null φi = 0, i = 0, 1 is

rejected. Being conditional on this, if φ0 6= φ1, we may define the concept of varied stationarity

because stationarity is confirmed across the entire study period, but the autoregressive coeffi-

cients and speeds of adjustment towards long-run equilibrium are different.3 If the hypothesis of

φi = 0, i = 0, 1, cannot be rejected, then it is indicative of local non-stationarity in both regimes,

and therefore non-stationarity sustains. However, we might only be able to confirm that either

φ0 or φ1 is insignificantly different from zero. In this case, we may define the concept of partial

non-stationarity or partial unit root because the price of crude oil is switching between regimes of

stationarity and non-stationarity.

A useful information of model (1)–(2), in our case, is that it enables us to identify sub-periods

during which the price of crude oil seems to be stationary and treat these periods as a signal: The

longer the economy stays in these periods, the more likely it is that the non-stationarity will not

hold. This econometric methodology allows us to distinguish periods that are associated with

stationary outcomes from those in which the non-stationarity holds.

3If −1 < φ0, φ1 < 0, the half-life associated with a deviation from long-run equilibrium may be approximated as

HL0 = (ln 0.5)/(1 + φ0) and HL1 = (ln 0.5)/(1 + φ1) for Regimes 0 and 1 respectively.
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3 Data and Results

We use the prices of two crude oil markets: the US West Texas Intermediate and the UK Brent.

The data comes from Thomson Financial Datastream and is given in US dollar per barrel. The

data spans from January, 1982 to July, 2011, namely 355 observations. We also consider prices of

bituminous coal and natural gas in our empirical study. Monthly price series ranging from January

1997 to September 2010 for bituminous coal, and from January 1976 to June 2011 for natural gas

are used in the current paper. Log transformations for these non-renewable resource prices are

used throughout the study.

The first stage of the empirical investigation is to test for the non-stationarity of these non-

renewable resource prices. Basically, we find no additional evidence against the unit root hypoth-

esis at the 5% significance level based on the ADF, PP, DF-GLS and NP tests in their level data.

When we apply the ADF, DF-GLS and NP tests to the first difference of these series (available

from the author upon request), we must reject the null hypothesis of a unit root at the 5% level or

better. This implies that prices of two crude oil markets: the US West Texas Intermediate and the

UK Brent, as well as prices of bituminous coal and natural gas are difference-stationary processes.

We now consider the possibility that the presence of a unit root, or the inability to reject the

null of a non-stationary prices, may be attributable to hitherto unacknowledged regime switches

with respect to the time-series properties of the data. In order to validate the Markov switching

model used in this paper, we first conduct several nonlinearity tests for these non-renewable re-

source prices. Psaradakis and Spagnolo (2002) examines the relative performance of some popular

nonlinearity tests when applied to time series generated by the Markov switching autoregressive

models. The nonlinearity tests considered include RESET-type tests, the Keenan test, the Tsay

test, the McLeod-Li test, the BDS test, the White dynamic information matrix test, and the neural

network test.4 We adopt these statistics to examine whether there any nonlinearity exists in these

non-renewable resource prices. The results are reported in Table 2. Table 2 shows that most of

the p-values of these nonlinear tests are smaller than the 5% significance level. For example, the

simulation results of Psaradakis and Spagnolo (2002) indicate that the BDS test has the highest

power performance relative to other nonlinear statistics. We observe that the p-values of the BDS

statistics are smaller than the 5% significance level or better, indicating that the prices of the Brent

oil, WTI oil, bituminous coal and natural gas are not i.i.d., indicating that these non-renewable re-

source prices do not follow the random walk process. They are better characterized by alternative

nonlinear model such as the Markov switching model.

Having established the ‘global’ and ‘nonlinear’ characteristics of the series, we now focus on

their ‘local’ behavior by estimating the Markov switching models discussed in Section 2. This ap-

proach has the advantage of neither splitting the sample period into different sub-periods nor

4Readers are referred to Psaradakis and Spagnolo (2002) for detailed descriptions of these tests.
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Table 2: p-values for a battery of non-linear tests

Brent WTI Coal Gas

RESET1 0.024 0.031 0.020 0.000

RESET2 0.024 0.031 0.020 0.003

KEENAN 0.638 0.121 0.052 0.814

TSAY 0.637 0.121 0.052 0.035

MCLEOD 0.011 0.000 0.000 0.000

BDS 0.000 0.000 0.002 0.000

WHITE1 0.341 0.333 0.215 0.752

WHITE2 0.000 0.003 0.157 0.000

NEURAL1 0.012 0.030 0.041 0.000

NEURAL2 0.049 0.046 0.040 0.089

(1) RESET1: Ramsey and Schmidt (1976). (2) RESET 2: Thursby and Schmidt (1977). (3) KEENAN: Keenan (1985).

TSAY: Tsay (1986). (4) The Ramsey-Schmidt test is referred to as RESET1. (5) The Thursby-Schmidt test is referred

to as RESET2. (6) MCLEOD: McLeod and Li (1983). (7) BDS: Brock et al. (1996). (8) WHITE1 and WHITE2 are

White’s (1987) information matrix tests. (9) NEURAL1 is the neural network test proposed by White (1989a). (10)

NEURAL2 is the neural network test proposed by White (1989b).

pre-imposing regime dates. In Table 3 we report maximum likelihood (ML) estimates (based

on the Gaussian likelihood) and associated asymptotic standard errors of the parameters of the

Markov switching ADF Eqs. (1)–(2) for these non-renewable resource prices. The estimated value

of σ1 is substantially larger than that of σ0, and thus regime 1 corresponds to the high-volatility

regime while regime 0 corresponds to the low-volatility regime. The rejection of the null hypothe-

sis of Hσ
0 : σ0 = σ1 throughout is consistent with the two regimes being characterised by different

volatilities.

Before reporting the estimated results, it is worthy to mention the simulation results reported

in Kanas and Genius (2005). They assess the power of the standard ADF test when the data

generation process is characterized by regime switching in volatility. They provide simulation

evidence that the when the autoregressive coefficient in the stationary regime is close to zero,

the MS-ADF test always rejects the zero non-stationary null, whereas the standard ADF unit root

test fails to do so in two-fifths of the cases. Although the power of the ADF test increases as the

autoregressive coefficient in the stationary regime moves further away from zero, the MS-ADF

still maintains an advantage in terms of test power.

In the cases of prices of the US West Texas Intermediate and the UK Brent, as well as bitumi-

nous coal, in regime 0 (the low-volatility regime), the ADF statistics fail to reject the null hypoth-

esis of the non-stationarity (φ0 = 0) at the 5% significant level.5 In regime 1 (the high-volatility

regime), the ADF statistics also fail to reject the null hypothesis of a unit root (φ1 = 0) at the 5%

5Gabriela et al. (2002) show that using standard critical values for unit root testing is acceptable when testing for

cointegration in two steps when using data generated from a two regimes model.
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Table 3: Estimation Results of the Markov Switching Unit Root Regression

Brent WTI Coal Gas

α0 −0.045 (0.027) −0.022 (0.025) 0.059 (0.025) 0.011 (0.002)

α1 0.289 (0.106) 0.248 (0.116) 0.102 (0.093) 0.029 (0.014)

σ0 0.062 (0.004) 0.062 (0.003) 0.025 (0.003) 0.021 (0.001)

σ1 0.124 (0.013) 0.135 (0.018) 0.093 (0.009) 0.107 (0.004)

p00 0.863 (0.096) 0.850 (0.072) 0.830 (0.096) 0.997 (0.003)

p11 0.960 (0.026) 0.976 (0.015) 0.881 (0.057) 0.996 (0.006)

φ0 0.016 (0.008) 0.008 (0.007) −0.017 (0.007) −0.013 (0.003)

φ1 −0.096 (0.034) −0.077 (0.035) −0.021 (0.022) −0.024 (0.011)

γ0 0.044 (0.069) 0.099 (0.061) 0.580 (0.064) 0.284 (0.077)

γ1 0.360 (0.110) 0.470 (0.136) 0.400 (0.134) 0.188 (0.058)

tφ0
2.000 1.142 −2.428 −4.333

tφ1
−2.820 −2.200 −0.954 −2.181

Hσ
0 0.000 0.000 0.000 0.000

RCM 38.997 26.579 41.673 5.684

LL −395.678 −420.293 −252.258 −565.604

St = 0 is the local stationary (or non-stationary) with low-voloatility regime. St = 1 is the local non-stationary

with high-voloatility regime. Hσ
0 refers to the null hypothesis σ0 = σ1 . HB

0 refers to the null hypothesis φ0 = φ1.

Figure for tφ0
is t-statistic for the null hypothesis φ0 = 0. Figure for tφ1

is t-statistic for the null hypothesis φ1 =

0. Figures for Hσ
0 are p-values. Figures in parentheses are standard errors. RCM is the abbreviatyion of regime

classification measure.

significant level. These findings are indicative of the local non-stationarity in both regimes, and

therefore non-stationarity sustains.

The case where stationarity is present in one regime only includes the price of natural gas.

The simple unit root test shows that we reject the null hypothesis of φ0 = 0 at the 5% significant

level (tφ0 = −4.333), while we cannot reject the null hypothesis of φ1 = 0 at the 5% significant

level (tφ1
= −2.181), which is indicative of the fact that state 0 is the locally stationary with low-

volatility regime and, of course, state 1 is the locally non-stationary with high-volatility regime for

the price of natural gas. In other words, in case of natural gas which is characterized by partial

non-stationarity.

The partial non-stationarity indicates that if the price of natural gas is staying in the stationary

with low-volatility regime, then the price is predictable and investors or speculators will race to

take advantage of it. That is, they will seize opportunity to arbitrage in order to make extra profit

from the market. Those investors who spot the opportunity first and who trade quickly will have

the ability to exploit it. However, prices will respond quickly to those buying and selling pro-

cesses, causing the arbitrage opportunity to evaporate and finally switch into the non-stationary

regime, and therefore partial non-stationarity sustains.

A merit of the Markov switching model is that for each time period, it allows the researcher to
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Table 4: Duration periods for staying in stationary and non-stationary states

Brent WTI Coal Gas

p00 0.863 0.850 0.830 0.997

p11 0.960 0.976 0.881 0.996

(1− p00)
−1 7.3 6.7 5.9 333

(1− p11)
−1 25 41.7 8.4 250

Condition (A)
√ √ √

Non-stationarity hold high high high medium

St = 0 is the local stationary (or non-stationary) regime. St = 1 is the local non-stationary regime.
√

denotes

the condition is satisfied. Condition (A): the expected periods of remaining in local non-stationary regime are

longer than those of remaining in the local stationary regime. Non-stationarity hold: The likelihood of the non-

stationarity holding.

estimate the posterior probability of the non-renewable resource price being subject to a particular

(stationary or non-stationary) regime. The inferred probabilities that the Eqs. (1)–(2) are in the

local non-stationary with high-voloatility regime at each date for the prices of the Brent, WTI oil,

bituminous coal and natural gas are shown in Figures 1, together with time series plots of the

logarithm of these non-renewable resource prices under analysis. We use the 0.5 rule (Hamilton,

1989) to assign the observation at time t to state i if the filtered probability is larger than 0.5.

This paper aims to determine the likelihood of the non-stationarity to hold. If this is not true,

then it signifies a signal that the price observed during the period are probably not an efficient mar-

ket. We employ the following criterion (A): the expected periods of remaining in the local station-

ary regime are shorter than those of remaining in the local non-stationary regime. We can easily

determine this condition by calculating the duration period using the formula (1− pii)
−1, i = 0, 1,

and observe the graph of the inferred probabilities. If this condition is accepted, then we expect

that there will be a strong likelihood that the non-stationarity will hold. The results of this condi-

tion for these non-renewable resource prices are summarized in Table 4.

Starting with the Brent oil price (Figure 1), the dates of 1986, 1990–1991, 1998, 1999, 2001, 2002,

2003, 2008 are identified as the local non-stationary with high-volatility regime. For the case of

WTI oil price (Figure 1), the dates of 1986, 1990–1991, 1999 and 2008 are also identified as the

local non-stationary with high-volatility regime. William (2005) and Maslyuk and Smyth (2008)

summarize some critical crude oil market chronologies, highlighting financial and political events

that have impacted on oil prices. For instance, the excess supply of crude oil leaded to a crash of

oil price to 10 US dollar per barrel by mid-1986. The Gulf War occurred in August 1990 caused

a sudden rush of the oil price. The Asian financial crisis and Russian default occurred in 1997,

which combined with increased OPEC production in 1998 ‘sent prices into a downward spiral’.

Terrorist attack in 11 September 2001 was another critical event, which caused a plummet in both

spot and futures oil prices. Political unrest in the first 6 months of 2002 associated with a series

8



of events in Venezuela caused oil price to rise and kept oil markets in a perpetual state of unrest.

The second Gulf War occurred in March 2003 also caused a sudden sharp decline in oil prices.

Recently, the so-called third crude oil crisis occurred when price reached its highest level of USD

145 per barrel at the middle of 2008. Afterward the price plunged to USD 30 per barrel at the end

of 2008 due to speculations.

Visual inspection based on the posterior probabilities allows us to select periods during which

price of non-renewable resource enter into stationary path and therefore non-stationarity is de-

nied. The expected period for remaining in the regime 1 is 25 (41.7) months while the estimated

expected period for remaining in regime 0 is around 7.3 (6.7) months for the Brent oil price (WTI

oil price). Therefor, we expect the likelihood that the non-stationarity will hold to be high.

In the case of the price of bituminous coal, the MS-ADF test shows that we cannot reject the

null hypothesis of a unit root either in regime 0 or regime 1. The corresponding filter probabilities

(Figure 1) show that the high-volotility regime occurs more frequently than the low-voloatility

regime. The expected time for remaining in regime 0 is 5.9 months, while the estimated expected

time for remaining in regime 1 is only around 8.4 months. We therefore expect that the likelihood

that the non-stationarity will hold is high.

Moving to the natural gas market, the filtered probabilities (Figure 1) display a clear dichotomy

in 1997. The graph of the filtered probabilities shows that the local stationary regime is associated

with the period 1976–1997. After 1997, the regime switches to the local non-stationary regime and

remains in this situation up to 2011. The expected times for remaining in the local stationary and

non-stationary regimes are (1 − 0.997)−1 = 333 and (1 − 0.996)−1 = 205 quarters, respectively.

Given that the last part of the sample is identified with a non-stationary period and condition (A)

is violated, we conclude that the likelihood that the non-stationarity will hold is medium.

To assess the quality of regime switching in model (1)–(2), we calculate the regime classification

measure (RCM) proposed by Ang and Bekaert (2002). It is defined as

RCM = 400 × 1

T
×

T

∑
t

pt(1 − pt)

where pt is the filtered probability of being in a certain regime at time t. Basically, this is a sample

estimate of the variance of the probability series. It is based on the idea that perfect classification of

regime would infer a value of 0 or 1 for the probability series and be a Bernoulli random variable.

Good regime classification is associated with low RCM statistic values. A value of 0 means perfect

regime classification and a value of 100 indicates that the two-regime model simply assigns each

regime a 50% chance of occurrence throughout the sample. Weak regime inference implies that

the model cannot successfully distinguish between regimes from the behavior of the data and may

indicate misspecification. Consequently, a value of 50 is often used as a benchmark (Chan et al.,

2011). The RCM measures are reported in the bottom of Table 3. It is not surprise to see that the

RCM values for all the series are reasonably low, especially for the case of natural gas. This shows
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that the model is able to confidently distinguish which regimes are occurring at each point in time.

4 Concluding Remarks

This is the first study that tests for the properties of non-stationarity and non-linearity simultane-

ously for the non-renewable resource markets, i.e., the crude oil (the US West Texas Intermediate

and the UK Brent), bituminous coal and natural gas, within a Markov regime-switching frame-

work. Whereas for a battery of standard unit root tests involving for these non-renewable resource

prices, non-stationarity is accepted in every case. Results from a range of non-linear test show that

the non-renewable resource prices exhibit non-liner feature and therefore the i.i.d. or the random

walk hypothesis does not sustain. The application of a Markov switching unit root test indicates

that non-stationarity of natural gas price, and therefore non-stationarity, is present at least one

regime. Rather than non-stationarity on the basis of a single test statistic across the entire study

period, this result suggests that the natural gas price is characterized by partial non-stationarity,

where the price shifts between local stationary and local non-stationary regimes. In the cases of

the US West Texas Intermediate, the UK Brent and bituminous coal, price is characterized by the

local non-stationarity in both regimes, and therefore non-stationarity sustains.
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Figure 1: Logarithm of the Brent oil price, WTI oil price, bituminous coal price and natural
gas price (black lines) and filtered probabilities for the local non-stationary with high-voloatility
regime (blue line).
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