電力・都市ガス需給モデルによる 合成メタンの導入可能性分析 Feasibility Study on Synthetic Methane Using an Electricity and City Gas Supply Model

大 槻 貴 司 *・ 柴 田 善 朗 ** Takashi Otsuki Yoshiaki Shibata

<u>Abstract</u>

Methane synthesis, or methanation, gains great attention in the context of sector integration and climate change mitigation. This study presents a techno-economic assessment on synthetic methane in Japan employing an electricity and city gas supply model. This model, formulated as a linear programming problem, explicitly consider a carbon recycling system, including carbon capture, water electrolysis and Sabatier reaction process. The electricity sector in this model is temporally disaggregated, balancing hourly consumption and supply for a year, to incorporate the intermittent output of solar and wind power (Variable Renewable Energy = VRE). Simulation results imply that cost reduction of renewables combined with a high carbon price, such as 75% cost reduction of VRE (from the level in 2014) and 750 US\$/tCO₂, would be crucial to accelerate synthetic methane. The results also imply that significant amount of VRE capacity would be necessary to decarbonize the both sectors, posing grid operation and social (such as land-use) challenges.

Key words : Synthetic methane, Carbon recycling, Variable renewables, Water electrolysis, Carbon price

1. はじめに

気候変動緩和に向けた道筋が議論される中、低炭素化策 として「カーボンリサイクル」が提案されている¹⁾. カー ボンリサイクルとはCO2を資源として捉えて循環的に利用 する方策であり、発電所や産業プラント、大気中等から分 離・回収した CO2を素材や燃料として固定化又は再利用す ることを指す. その一つにメタン合成がある. メタンは天 然ガスや都市ガスの主成分であることから、既存のエネル ギー供給インフラ(LNG タンカーや都市ガス導管,ガス火 力発電所等)の有効活用,及び水電気分解を介した電力・ 都市ガス部門のセクターインテグレーションや低炭素化の 観点から期待が高まっている. また, 国内再生可能エネル ギー(再エネ)由来の水素を用いてメタン合成を行う場合 は,水素製造量が天候などの自然条件に左右されるものの, エネルギー自給率向上に資する可能性がある.しかしなが ら,このような期待の一方で,合成メタンの導入可能性評 価はそれ程実施されていない.そこで本研究では、日本の 電力・都市ガス部門を統合的に取扱う最適化型モデルを構 築し、CO2 回収・水電気分解・メタン合成による炭素循環 システムの経済合理性や導入条件を定量分析した.具体的 には、炭素税率や太陽光・風力発電費用に関する感度分析 を行い、合成メタンの大規模導入に必要な水準を検討した.

2. 研究手法

2.1 モデル概要

本研究では日本を対象とした多地域・高時間解像度・最 適化型の電力・都市ガス需給モデルを構築した.このモデ ルは単年モデルであり,所与の電力・都市ガス需要に対し て、コスト最適な電源構成及び都市ガス構成¹(輸入天然 ガス又は合成メタン)を計算する.地域数は電力供給区域 を基に計9地域(北海道,東北,東京,中部,北陸,関西, 中国,四国,九州・沖縄)とした.時間的解像度は1時間 値(年間 8760時間帯)に設定し,太陽光・風力発電の出力 変動性や水電解装置の運用,発電由来 CO₂の発生時期を明 示的に考慮した.定式化詳細は紙面の都合上割愛する.

モデルのフロー概要を図1に示す(CO2に係るフローは 赤色で表示した).本モデルでは電力,水素,メタン,発電 由来 CO2,産業部門 CO2について年間 8760 時間帯で需給 バランスを確保する仕組みとなっている.発電関連技術と しては 14 種類(太陽光,風力,水力,原子力,石炭火力, 石油火力,ガス汽力,ガス複合,水素火力,燃料電池,揚 水式水力,蓄電池,地域間送電,域内送配電)を,水素製 造・貯蔵技術として2種類(水電気分解,圧縮水素貯蔵タ ンク)を,メタン供給として3種類(LNG 輸入,メタン合 成,域内送配)を,そして発電・産業部門での CO2回収と 直接空気回収(Direct Air Capture = DAC)を考慮した.地 域間のエネルギー融通は電力のみモデル化した(水素やメ タン, CO2の地域間輸送は考慮していない).また,風力発

^{*(}一財)日本エネルギー経済研究所 電力・新エネルギーユニット 新エネルギーグループ 兼 計量分析ユニット エネルギ ー・経済分析グループ 研究員

^{**(}一財)日本エネルギー経済研究所 電力・新エネルギーユニ ット 新エネルギーグループ マネージャー 研究主幹

¹都市ガスの成分はメタンやエタン,プロパン,ブタン等であるが, 簡単のため,本研究では主成分であるメタンのみを考慮する.

表1 発電・電力貯蔵技術の想定

a. Thermal power plants						b. Renewables					
	Coal-fired	CCGT	Gas ST	Oil-fired	Nuclear	H ₂ turbine	Fuel cell		Hydro	Solar	Wind 1~3
Construction cost [US\$/kW]	2500	1200	1200	2000	4297	1200	2500	Construction cost [US\$/kW]	6400	2940	2840
Lifetime [year]	40	40	40	40	40	40	20	Lifetime [year]	60	20	20
Annual O&M cost rate	0.03	0.02	0.02	0.03	0.04	0.02	0.01	Annual O&M cost rate	0.01	0.01	0.02
Fuel cost [US\$/toe]	136	LNG import	price: 396;	592	19	H ₂ cost is determined endogenously					
		Synthetic me	thane cost is					c. Storage			
		determined e	endogenously						Pumped	Battery	
Efficiency	0.41	0.56	0.42	0.39	1.00	0.56	0.50	Construction cost [US\$/kWh]	230	170	1
Own consumption rate	0.06	0.02	0.02	0.05	0.04	0.02	0.02	Lifetime [year]	60	15	
Availability	0.90	0.90	0.90	0.90	0.90	0.90	0.90	Annual O&M cost rate 0.01 0.0		0.01]
Maximum ramp-up rate	0.26	0.44	0.44	0.44	0.00	0.44		Cycle efficiency	0.70	0.85]
Maximum ramp-down rate	0.31	0.31	0.31	0.31	0.00	0.31		Self-discharge rate 0.0001 0.001]	
Minimum output rate	0.30	0.20	0.20	0.30	0.80	0.20]	KWh/kW ratio 6 6]	

電は陸上風力のみ想定した.

2.2 主要想定

(1) 電力・都市ガス需要

本モデルでは地域別・時間帯別の電力・都市ガス需要を 想定する必要があるが、次の通り設定した.まず、日本全 体での電力・都市ガス年間需要として IEA WEO2018²⁾ Sustainable Development Scenario (SDS)の2040年値を参照 した.電力需要は927TWh/year、都市ガスは29Mtoe/year である.次に、これらの値を都道府県別の需要実績³⁾で按 分し、モデル内9地域の年間需要を作成した.最後に、電 力需要については2017年度の負荷曲線を基に1時間値の需 要に変換した.都市ガスについては1時間値の負荷曲線デ ータが得られなかったため、年間を通して一定と仮定した. (2)発電・電力貯蔵技術と地域間連系線

発電技術と電力貯蔵技術の想定を表1に示す.発電所の 建設単価や寿命,運転維持費(O&M費),発電効率,所内 率,出力調整能力は経産省⁴⁾や杉山⁵⁾を参照し,地域に依 らず共通とした(為替は1US\$=100円で換算し,発電効率 や燃料熱量は低位発熱量ベースで示している).建設単価は 2014年モデルプラント⁴⁾に相当する.なお,太陽光・風力 発電の建設単価は将来低減されることが期待されるが,本 研究では,第2.3節で記す通り,費用低減を想定した分析

表2 水電気分解と圧縮水素貯蔵タンクの想定

	Electrolyzer	Hydrogen tank		
Construction cost	700 US\$/kW	700 US\$/kW for compressor;		
		15 US\$/kWh for storage tank		
Lifetime [year]	20	15		
Annual O&M cost rate	0.01	0.01		
Efficiency	0.70	0.9 (cycle efficiency)		

表3 メタン合成の想定

		CH ₄ synthesis		
Annualized construction cost [US\$/(toe/year)]		100		
Input	Hydrogen [toe]	1.2		
	CO ₂ [tCO ₂]	2.3		
	Electricity [MWh]	0.37		

表4 CO2回収装置の想定

		CO ₂ ca	Direct Air	
		Power plant	Industry	Capture
Annualized constru	42	42	195	
Input	Electricity [MWh/tCO ₂]	0.22	0.22	0.37
	Methane [toe/tCO ₂]			0.125

を行う. 燃料費は IEEJ⁶⁾の 2040 年値を参照し,域内送配 電ロスは 7.6%とした. 発電技術や電力貯蔵技術の設備容量 は,下限値として 2016 年度実績値を与えており,水力・原 子力・揚水式水力を除いて最適化計算で決定される.水力・ 原子力・揚水式水力の設備容量は 2016 年度の値で所与とし た. 原子力発電は運転可能と想定した.

太陽光・風力発電の出力波形(1時間値)は文献⁷⁾から

各地域の代表都市のものを取得した.風力発電については 3 つの資源グレード(G1~G3)を設け,設備利用率や資源 量で差を設けた.G1は設備利用率20%以下,G2は20~30%, G3 は 30%以上の資源と定義し,環境省⁸⁾を基に各グレー ドの資源量を設定した.

地域間連系線の設備容量は2016年の実績値⁹⁾で所与(外 生変数)とした.地域間連系線の運用は熱容量や周波数維 持,同期安定性等の様々な要因を考慮する必要があるが, 本研究ではOCCTO⁹⁾に基づいて運用容量上限も制約した. (3)水素製造・貯蔵技術

水電気分解と圧縮水素貯蔵タンクの想定は FCHJU¹⁰ や 小宮山¹¹⁾から設定した(**表 2**).本モデルの圧縮水素貯蔵 タンクは圧縮機と貯蔵タンクを分けて定式化しており,そ れらの設備容量比率は最適化計算で決定される.

(4) メタン合成

メタン合成プロセスとしてはサバティエ反応を想定する. サバティエ反応とは高温高圧下で触媒を用いて,4Nm³の水 素と1Nm³のCO₂から,1Nm³のメタンと2Nm³の水を合成 する化学反応である.メタン1Nm³合成に補機動力0.32kWh が必要であり¹²⁾,メタン1toe 合成あたりの水素消費は 1.2toe,CO₂は2.3tCO₂,補機動力は0.37MWhとなる(**表** 3).建設単価は50万円/(Nm³-CH₄/hour)と想定し¹²⁾,年経 費率15%と熱量単位への換算で100US\$/(toe/year)とした. (5)CO₂分離・回収技術と発電・産業部門CO₂

発電・産業部門での CO₂回収は簡単のため燃焼後回収の みを想定し,設備費や電力消費は RITE¹³⁾から設定した(**表 4**). DAC の諸元は Keith¹⁴⁾ を参照し, 煆焼プロセス向け の熱として天然ガス消費を想定した.

発電部門の CO₂生成量や時期は火力発電の運用に基づい て内生的に決定される.一方,本モデルは電力・都市ガス 需給モデルであり,産業部門における石炭・石油由来の CO₂ は捕捉できない.そこで本分析では WEO2018 SDS²⁾の産 業部門における 2040 年の石炭・石油消費量を基に,それら の CO₂ 生成量を推計してシナリオとして与えた(年間 85MtCO₂. **図1**の赤色塗潰し部分).時間毎の排出量は年間 を通して一定と仮定した.また,産業部門には鉄鋼やセメ ント等の業種が含まれるが,本研究では集約的に取扱う.

2.3 ケース設定

本研究では太陽光・風力発電(Variable Renewable Energy = VRE)の建設単価と炭素税に関する感度分析を行い、合 成メタンがコスト優位となる条件を明らかにする.水電解 由来水素でメタン合成を行う場合、コスト構造の中で支配 的となる要素は発電原価であるため(付録),ここでは VRE 費用を感度分析対象として選択した.具体的な分析ケース としては、VRE 建設単価について 5 通り(現状=2014 年モ デルプラント価格、25%減、50%減、75%減、90%減)と、 炭素税率について 8 通り(US\$/tCO2 単位で 0, 100, 200, 300, 400,500,750,1000)の合計 5×8=40 ケースを想定した.VRE 建設単価の想定にあたっては、表1の値から両技術を一律 で低減させた.以下,ケース名の表記は, VRE 建設単価が 現状ケースを VRE Ref, 25%低減ケースを VRE 25% red 等 とする. 炭素税率については, 炭素税無しケースを Cpr 0\$, 100US\$ケースを Cpr 100\$等と記す. なお, 炭素税率は発 電・都市ガス部門の CO2 正味排出分(図1の赤色二重線部 分:石炭・石油火力の発電燃料や輸入LNGに含まれる炭素) に課される. 合成メタンとして再利用した CO2 には税率が 課されないようにモデル化を行った.

3. シミュレーション結果

3.1 合成メタン導入量

図2に全ケースにおけるメタンの年間需給を示す.合成 メタンの大規模導入には VRE 建設単価の大幅な低減と共 に相当高額な炭素税が必要となる可能性が示唆されている. VRE_Ref や VRE_25%red では,Cpr_1000\$の条件下におい ても合成メタンの導入は限られた.炭素価格の比較対象と して,大気中 CO2 換算濃度 450~480ppm 安定化シナリオで

図2 日本全体でのメタンの年間需給

⁽注) 正の値はメタン供給,負はメタン消費を示す.参考として LNG 輸入量(2018年)は 101 Mtoe. DAC=直接空気回収.

は、複数モデルの中央値で 2050 年に 200~300 US\$/tCO₂と される¹⁵⁾. その水準と比較して 1000 US\$/tCO₂ は相当高額 であるが、VRE が高価な状況では水電解水素もコスト的に 不利となり、その水素を原料とするサバティエ反応も十分 なコスト競争力を持たなかったと考えられる.

他方, VRE_75%red では Cpr_750\$以降で, VRE_90%red では Cpr_500\$以降で合成メタンが拡大した.例えば, VRE90%red かつ Cpr_1000\$の条件では合成メタン製造量が 29.4Mtoe に達し,都市ガス需要の全量を賄う姿となってい る.図3は各ケースにおける VRE の加重平均発電費用(太 陽光・風力の発電費用合計を発電出力合計で除したもの) であるが, VRE_75%red では41~59 US\$/MWh, VRE_90%red では 18~24 US\$/MWh の水準に低減した.tCO2 あたり 500US\$や 750US\$といった炭素税率は依然として高額では あるものの, VRE 発電費用がこういった水準まで低減した 場合には合成メタンの導入機会が拡大する可能性がある. なお,図3中では炭素税率によって加重平均発電費用が大 きく変化する場合があるが(例えば,VRE_Ref における Cpr_100\$と Cpr_200\$),これは風力導入によって VRE 内訳 が大きく変化したことに因る.

合成メタンの原料となる CO2 は何れのケースにおいても 産業部門 CO2 が選択され,発電部門 CO2 や直接空気回収 (DAC) は導入されなかった.発電部門では炭素税率強化 と共に VRE が増加し(第 3.2 節), CO₂の供給が困難にな ったと推測される.また,本分析で再利用された CO₂は最 大でも年間 68MtCO₂ (VRE_90%red かつ Cpr_1000\$のケー ス)であるが,産業部門 CO₂で十分に供給できる量であっ たため, DAC も導入されなかったと考えられる.但し,本 稿では産業部門 CO₂を集約的に取扱っている点には留意さ れたい.業種や産業プラントの規模等によっては CO₂回収 が難しい場合も考えられ,産業部門での CO₂回収ポテンシ ャルについては今後詳細な検討が必要である.仮に産業部 門 CO₂が十分に利用できない場合には DAC が必要となる 可能性がある.

3.2 **発電部門の傾向**

図4に日本全体の発電電力量を,図5に設備容量を示す. これらの図では VRE 費用低減や炭素税率増加に伴って太 陽光発電が拡大する様子が窺える.風力発電も増加したも のの,日本全体へ有意な影響を及ぼすまでには至らなかっ た.本分析では地域間連系線増強を想定しておらず,地域 偏在性が高い風力資源の導入制約となったと考えられる.

合成メタンが大規模に導入されたケース(VRE75%redでの Cpr_1000\$や, VRE90%redでの Cpr_750\$や Cpr_1000\$の3 ケース)では発電量総計が電力需要を大幅に超えている

図5日本全体の発電設備容量

(図4). これは水素製造(水電気分解)の電力消費のため であり、その量は年間 588TWh~608TWh に達した. 設備容 ■ (図 5) においても、最終消費用に加えて水素製造用の 太陽光発電設備が必要となることから、総設備容量は 1729GW~1819GW と評価されている. 2016 年の総設備容量 (約325GW)と比較して5倍を超える規模である.再エネ 水素とメタン合成によるセクターインテグレーション・低 炭素化は期待が高いが、仮にそれらで脱炭素化を目指す場 合には大量の再エネ開発が必要となることが分かる.とこ ろで、本分析では太陽光発電の土地制約は考慮していない が、これ程の設備導入は土地利用状況に影響を及ぼす可能 性があり、実現に向けてはその点に留意が必要である.

合成メタン導入時の電力需給の例として,図 6a に VRE_90%red かつ Cpr_1000\$のケースにおける 4 月第 1 週 の東京を示す. 最終消費を大幅に超える規模の太陽光発電 が導入され、蓄電池の日間充放電で需給バランスを確保す ると共に、昼間の電力を水電気分解に利用する運用が費用 最適となった、図 6b は水素貯蔵量である、水素は主に昼間 に製造されるが、その時間毎の製造量を均すため、日間~ 週間周期で水素を貯蔵する様子が窺える.水素需給バラン ス確保において貯蔵が重要な役割を果たす可能性がある.

3.3 CO₂排出量

CO2排出量を図7に示す. 塗潰しグラフは電力・都市ガ ス部門での正味排出量(図1の赤色二重線部分:石炭・石 油火力の発電燃料や輸入 LNG に含まれる炭素量) を, 斜線 グラフは合成メタン燃焼に伴う CO2 生成量を示す. ここで の合成メタンの炭素分は産業部門での回収 CO2 に由来する ものであり、実質的には排出ゼロと見做すことができる.

電力・都市ガス部門の正味排出量は炭素税率と共に減少 傾向が窺えるが, VRE Ref や VRE 25%red, VRE 50%red では 1000US\$の税率においても LNG 輸入が選択され, 62~121MtCO2の正味排出が生じている.他方, VRE 75%red や VRE 90% red の高税率下では合成メタン利用により,正 味排出量が大幅に抑制された. 例えば, VRE 90%red かつ Cpr 1000\$のケースでは正味排出量が 2MtCO₂ へ減少して

いる. カーボンリサイクルによって 68MtCO2の排出が実質 的に回避されたことで (図中の斜線部), ゼロエミッション に近い電力・都市ガス供給となった. この点は合成メタン 利用の効果と言える.なお、ここでの議論では合成メタン をカーボンニュートラルと見做し、CO2 削減効果を発電・ 都市ガス部門でカウントしたが、カーボンリサイクルの社 会実装においては再利用した CO2 の帰属—排出源と利用側 のどちらに帰属させるか、又は両者で割当てるのか等--が 重要論点となる可能性がある. 今後は制度的側面からも議 論を深めていく必要があろう.

4. まとめ

本研究では日本を対象とした多地域・高時間解像度・最 適化型の電力·都市ガス需給モデルを開発し、合成メタン

の技術経済的な導入条件を検討した. 合成メタン製造費用 の中で支配的である VRE 費用,及び,炭素税率に関する感 度分析の結果,合成メタンの大規模拡大には VRE 費用の大 幅な低減と高価な炭素税率の両者が必要であることが示唆 された.再エネ費用低減に向けた技術開発と環境政策の強 化が合成メタン普及の鍵を握ると言えよう. 他の興味深い 結果として,再エネと水素製造,そして合成メタンで電力・ 都市ガスを低炭素化する場合、最終消費用に加えて水素製 造用の発電設備が必要となるため、再エネ設備導入が相当 量に達することも示された.

今後の研究課題としては想定の精緻化や、革新的技術の モデル化と分析が挙げられる.具体的には産業部門の各業 種における CO2回収可能性を考慮した検討や、共電解等の 新たな技術によるメタン製造の可能性評価が挙げられる.

付録 合成メタン製造の費用構造

第2.2 節に示した水電解装置やCO2回収(発電・産業), メタン合成に係る費用想定を基に、合成メタン製造費用を 試算した結果が**付図1**である.水電解装置の設備利用率は 30%, メタン合成装置では 80%を想定し, CO2 や水素の輸 送費用は考慮していない. 電力原価で感度分析を行った結 果, 50US\$/MWh 以上の場合は水電解向けの電力費が支配 的であることが分かる. その要因としてメタン 1Nm³ 合成 に 4Nm³の水素が必要なことが挙げられる. また, 日本の LNG 輸入価格(2017 年度実績は 1US\$=100 円換算で 9.4US\$/MMBtu)と比較すると、10US\$/MWhの場合でも合 成メタン費用は輸入 LNG の 2.6 倍となり、コスト面の課題 も示唆されている.

参考文献

- 1) METI; カーボンリサイクル技術ロードマップ, (2019).
- IEA; World Energy Outlook 2018, (2018). 2)
- METI; 都道府県別エネルギー消費統計, (2018). 3)
- METI; 長期エネルギー需給見通し小委員会に対する 4) 発電コスト等の検証に関する報告, (2015).
- 杉山達彦,小宮山涼一,藤井康正;全国の電力基幹系 5)

付図1 合成メタン製造の費用構造

統を考慮した最適電源構成モデルの開発と太陽光・風 力発電大量導入に関する分析,電気学会論文誌 B 136 巻 12 号 pp.864-875, (2016).

- 6) IEEJ; IEEJ アウトルック, (2018).
- 7) Renewables.ninja; https://www.renewables.ninja/, (アクセ ス日:2019年10月23日).
- 8) 環境省; 平成24年度再生可能エネルギーに関するゾー ニング基礎情報整備報告書, (2013).
- 9) 電力広域的運営推進機関;広域メリットオーダーシミ ュレーションの概要, (2016).
- 10) FCHJU; Development of Water Electrolysis in the European Union Final Report, (2014).
- 11) 小宮山涼一, 大槻貴司, 藤井康正; 再生可能エネルギ 一余剰電力の水素貯蔵を考慮に入れた最適電源構成の 検討、電気学会論文誌 B 134 巻 10 号 pp.885-895, (2014).
- 12) 柴田善朗,木村謙仁;カーボンニュートラルメタンの 将来ポテンシャル -PtG と CCU の活用:都市ガスの低 炭素化にむけて-,(2018).
- 13) RITE; DNE21+の概要, https://www.rite.or.jp/system/ global-warming-ouyou/modeltodata/overviewdne21/, (アク セス日:2019年10月23日).
- 14) D.W. Keith, G. Holmes, D. St. Angelo, K. Heidel; A Process for Capturing CO2 from the Atmosphere, Joule, Vol.2 Issue 8 pp.1573-1594, (2018).
- 15) IPCC; Technical Summary of WG3 in the 5th Assessment Report, (2014).