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Abstract 
For this paper, we attempted to forecast next-day electricity load in the 10 Japanese areas by using artificial neural 

networks, a type of artificial intelligence technology. The model used here conducts a principal component analysis of daily load 
curves and utilizes selective ensembling, indicating good forecasting performance with the mean absolute percentage error 
limited to less than 2.5%. However, forecasting performances differ widely from season to season, with the percentage error 
ranging wide from 1.4% in Tohoku to 2.7% in Chugoku and Kyushu. Seasonal changes in errors in Hokkaido and Okinawa 
differ from those in other regions, reflecting regional characteristics. 

As the model used here is a simple one using meteorological data at only one location in each area, more massive 
data may be used to further improve forecasting performance. Even if forecasting performance is improved in a manner to extend 
the model, however, summer and winter forecasting errors may still be large. It would be a key future research challenge to 
consider an advanced forecasting technique assuming abnormal weather conditions and weather forecasting errors. 

 Introduction 

Artificial intelligence has evolved remarkably in recent years, attracting interest from not only experts but also a wide 
range of other people. Attracting attention particularly is the artificial neural network (ANN) technique. This technique has a long 
history, having been studied in parallel to the evolution of computers since around World War II. As efficient training of multi-
layered networks had remained difficult, however, ANN research underwent a series of stagnations called “AI winters” before 
making great achievements in line with the improvement of the technique, the advancement of computer performance and the 
expansion of data. Today, multilayer ANN with deep learning techniques sometimes perform even better than humans by 
learning massive data. In 2017, AlphaGo developed by a subsidiary of Google, which uses a multilayer ANN, defeated the top 
professional Go player, impressing the world with the effectiveness of the technique. In this paper, we apply the method of ANN 
to forecast hourly electricity loads over a short term. 

Short-term load forecasting (STLF), a key challenge for stable electricity supply, has long been subjected to research. 
Traditionally, statistical techniques such as the autoregressive moving average (ARMA) model and the autoregressive integrated 
moving average (ARIMA) model have been used for the STLF. Recently, novel techniques have also been proposed to identify 
similar days based on past data1). TESLA has reportedly developed a model that combines parameterized non-linear regression 
model and a time series filter for forecast adjustment2). Electric utilities implement load forecasting for daily operations, trying to 
accurately forecast load based on meteorological data including temperature, humidity and solar radiation, past similar-day data 
and interviews with large customers3) 4). 

While these “traditional” efforts have been continued, machine learning techniques have increasingly been used for 
load forecasting. Since a review published in 2003 introduced dozens of relevant studies using artificial intelligence5), a large 
number of relevant papers have been published over the last decade. While a number of techniques including support vector 
machine (SVM) and random forest (RF) have been attempted for STLF, the ANN has recently been subjected to research most 
frequently. The ANN is widely recognized as improving forecasting performances with advanced techniques, and various 
techniques have been adopted according to specific objectives. These include not only the expansion of data put into models and 
the optimization of hyperparameters, but also the utilization of advanced neural networks rather than simple feed-forward ANNs, 
and their combination with other methods such as genetic algorithms (GA), particle swarm optimization (PSO), gravitational 
search algorithms (GSA) and adaptive neuro-fuzzy inference systems (ANFIS)1. Among the advanced neural networks are 
recurrent neural networks (RNN), convolutional neural networks (CNN), extreme learning machines (ELM) and radial basis 
function (RBF) 6). 

* The Institute of Energy Economics, Japan 
1 It must be noted that these are to only a part of the studies seen in the literature published in the past few years. 
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 It is difficult to compare the advantages and disadvantages of these techniques. The first reason for the difficulty is 
that most studies use only certain data sets for limited regions, days and time zones for assessment. As a matter of course, it is 
not correct to directly compare documented error figures. Furthermore, any model’s forecasting performance widely differs 
depending on the data set, as explained later. A technique that achieves good forecasting performance for a data set may not 
necessarily make the same achievement for any other data set. Even for load forecasting for the same region, any technique may 
not necessarily achieve accurate forecasts for different seasons. Therefore, it is not easy to conclude that any technique is better 
than any other. Forecasting performances of models based on one technique differ by hyperparameters. In principle, 
hyperparameters that can produce the best forecasting performance should be selected. Practically, however, as it is excessively 
time-consuming to optimize all the hyperparameters, they are determined through trial and error in most cases. For this reason, 
when a researcher compares performances of two models, there is always a risk that the model that he or she wants to recommend 
is better optimized than the other. 
 In such situation, trials have also been conducted to compare different models under the same conditions. For example, 
a group led by Dr. Tao Hong at the University of North Carolina at Charlotte held the Global Energy Forecasting Competition 
(GEFCom) 7,8) in 2012, 2014 and 2017 for participants to compete in stochastic, deterministic and hierarchical forecasting of 
electric loads, and solar photovoltaics and wind power generation. The French transmission system operator Réseau de transport 
d'électricité (RTE) 9) and the Japanese electric utility Tokyo Electric Power Co. (TEPCO)10) implement their respective 
competitions in forecasting day-ahead loads.  
 In this paper, we developed a short-term load forecasting model using the ANN to assess the forecasting performance 
for each of the 10 Japanese service areas. The model used here, though apparently having high forecasting performance, is a 
simple one that utilizes meteorological data (weather description and minimum/maximum temperatures) at one location in each 
area in addition to past electric load and calendar data2. Keeping in mind the potential further improvement of the forecasting 
performance through technical revision and data expansion, we here aimed to assess the forecasting performance for each area 
and each season, hoping to see further progress in research. 

 

 Short-term load forecasting (STLF) model using ANN 

 The ANN is a technique to use massive data for learning a nonlinear relationship between input and output vectors. 
Its conceptual diagram is given as Figure 2-1. 

 

 
Figure 2-1. A conceptual diagram of the artificial neural network 

 

                                                       
2 In contrast, Toshiba Corp.’s model that won the highest award in TEPCO’s first electricity load forecasting technology contest is 
explained as a complex and sophisticated model that uses multipoint AMeDAS data and combines artificial intelligence and sparse 
modeling technologies. 
https://www.toshiba.co.jp/about/press/2017_11/pr_j0801.htm 
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 Here, M “hidden” layers are set between input and output layers. Layer n (1 ≤ n≤M) consists of Nn nodes or “neurons.” 
Numerous sets of input vector X and output vector Y are given for training a model before new input data XF is given to estimate 
the unknown value of YF. In general, the more data there are for training, the better the results are. When a future forecast is based 
on past actual data, however, the data available for training may frequently be limited. As for the electric load forecasting 
attempted here, for example, load data over a decade may cover only less than 4,000 days, which is not big enough for machine 
learning. In this case, forecasting performance depends on how efficiently a machine learns from limited data. 
 
 In this study, we attempted to forecast hourly electric loads for the next day (Day d+1) at 8 a.m. on Day d, simulating 
actual operations at an electric utility. Data available for input into a model include calendar data (years, months, days, days of 
week and national holidays), actual load data until 7 a.m. on Day d, meteorological data (weather description and 
minimum/maximum temperatures) until Day d-1 and weather forecast data that are made available by the morning of Day d.  

Although the use of forecast temperature data over 24 hours and forecast humidity data are expected to improve the forecasting 

performance11), we used only minimum and maximum temperature data, mainly because of the availability of past forecast data.. 
Our model analyzes a daily load curve through a principal component analysis (PCA) and adopts selective ensembling to reduce 
forecasting errors, which enables the model to make significantly better forecasting than a simple ANN. For more details of the 
model, see Appendix 1. 

 

 Assumptions and the data used  

3-1 Data used for the assessment 

3-1-1 Electric load data 

 In this analysis, we used the ANN for forecasting electric load in the 10 areas, using load data published by the utilities 
(Table 3-1). We used data between January 1, 2012, and June 30, 2018 for the 9 areas from Hokkaido and Tohoku, and data 
between April 1, 2016, and June 30, 2018 for Okinawa. These data reflect regional economic activities and weather conditions, 
as shown in Appendix 2. 

 

Table 3-1 Electric load data used for the study 

Area Period 
Number of 

days 

Number of 
missing data 

(days) 
Hokkaido Jan. 1, 2012 - Jun 30, 2018 2,341 32 
Tohoku Jan. 1, 2012 - Jun 30, 2018 2,341 32 
Tokyo 
 

Jan. 1, 2012 - Jun 30, 2018 2,344 29 

Chubu Jan. 1, 2012 - Jun 30, 2018 2,336 37 
Hokuriku Jan. 1, 2012 - Jun 30, 2018 2,345 28 
Kansai Jan. 1, 2012 - Jun 30, 2018 2,347 26 
Chugoku Jan. 1, 2012 - Jun 30, 2018 2,303 70 
Shikoku Jan. 1, 2012 - Jun 30, 2018 2,372 1 
Kyushu  Jan. 1, 2012 - Jun 30, 2018 2,368 0 
Okinawa Apr. 1, 2016 - Jun 30, 2018 820 1 

Sources: Websites of former general electric utilities 

3-1-2 Meteorological data 

 As for meteorological data, we used actual data and weather forecasts published by the Japan Meteorological Agency 
(JMA) for cities where the headquarters of the former general electricity utilities are located (Table 3-2). Specifically, we here 
used four binary variables, indicating whether the daily weather description includes the words “sunny,” “cloudy,” “rainy” or 
“snowy,” and maximum/minimum temperatures. 
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Table 3-2  Areas and representative cities 
Area City  Area City 

Hokkaido Sapporo  Kansai Osaka 
Tohoku Sendai  Chugoku Hiroshima 
Tokyo Tokyo  Shikoku Takamatsu 
Chubu Nagoya  Kyushu Fukuoka 

Hokuriku Toyama  Okinawa Naha 
 

3-2 Modeling framework and evaluation metrics 

3-2-1 Modeling framework 

 In this paper, we used load data given in Table 3-1 for forecasting electric loads between July 2017 and June 2018 
and compared forecast and actual data to assess forecasting errors. 
 When artificial neural networks are used for forecasting, data available at the time of forecasting are usually divided 
into two parts, one for training and the other for validation. Under the technique given in this paper, we used validation data for 
selective ensembling. 
 Here, we adopted a month just before the forecasting period as the validation period. When assessing forecast errors 
for forecasting in February 2018, for example, we used data between January 2012 (April 2016 for Okinawa) and December 
2017 for training and data in January 2018 for validation. Into the model trained with these data, data available in the morning of 
January 31 were put to forecast load on February 1, then data available in the morning of February 1 were put to forecast load on 
February 2. We repeated this process to get forecast data through February 28. 
 The ANNs of the same structure using the same training data may produce different forecasts (and forecasting 
performances) depending on different initial values, which are given as random numbers. For this paper, therefore, we made 15 
computations using different sets of initial values and took the average of the 15 forecast errors to assess the forecasting accuracy 
of the model. 

 

3-2-2 Evaluation metrics 

 As performance metrics, we adopted the root mean square error (RMSE) and the mean absolute percentage error 
(MAPE) defined by the following equations: 

 RMSE ൌ ඨ
1
݊
ሺ ௧݂ െ ௧ሻଶݕ

௧

	 (1) 

 MAPE ൌ 	
1
݊
ฬ ௧݂ െ ௧ݕ

௧ݕ
ฬ

௧

 (2) 

 Here, ft represents a forecasted load, yt an actual load, and n the number of data within a forecasting period. As 
indicated by Equations (1) and (2), the RMSE imposes a greater penalty on a large error than the MAPE, indicating that an 
RMSE ranking of forecasting performances does not necessarily match a MAPE ranking. 

 

 Results and discussion 

4-1 Short-term load forecasting for the Tokyo area 

4-1-1 Examples of forecast results 

 Figures 4-1, 4-2, 4-3 and 4-4 show forecast and actual data for a summer period (August 21-30, 2017), an autumn 
period (September 1-10, 2017), a winter period (February 15-24, 2018) and a spring period (April 1-10, 2018), respectively, in 
Tokyo area. It must be noted that each figure indicates one of 15 projections. 
 As indicated by these figures, the forecasting error widely differed from season to season even in the same Tokyo 
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area. The RMSE was as large as 1.95 GW in summer and 1.74 GW in winter and as small as 0.79 GW in autumn and 0.60 GW 
in spring. For August 28, 2017, in the summer period, for example, the maximum temperature was forecast on the previous day 
at 28℃ with the weather given as “cloudy,” differing far from the actual maximum temperature at 31.4℃ under “cloudy, clear later” 
weather. As for August 30, the forecast minimum temperature was 27℃, far above the actual one at 24.1℃, though with the forecast 
maximum temperature at 33℃ close to the actual one. The day’s actual weather was rainy, failing to meet the forecast weather. 
 On February 22, 2018, it snowed against a weather forecast, with the maximum temperature coming at 5.7℃ far below 
the forecast level of 9℃. On the next day, it was “sleety, temporarily cloudy, clear later” with the maximum temperature at 8.1℃ 
far below the forecast level of 11℃. In this way, weather forecast error has great influence on load forecasting error. In summer, load 
generally exceeds the forecast level when the actual temperature is higher than forecast or it is clear against the weather forecast. 
Conversely, load in winter exceeds the forecast level when the actual temperature is lower than forecast or it is snowy against the 
weather forecast. 

 
 

 
Figure 4-1 Actual and forecasted loads for the Tokyo area (Aug. 21 - 30, 2017) 

 
  

 
Figure 4-2 Actual and forecasted loads for the Tokyo area (Sep. 1 - 10, 2017) 
 

 
Figure 4-3 Actual and forecasted loads for the Tokyo area (Feb. 15 - 24, 2018) 
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Figure 4-4 Actual and forecasted loads for the Tokyo area (Apr. 1 - 10, 2018) 
 
 Of the period given in Figure 4-2, the September 2-10 period matched TEPCO’s first electricity load forecasting 
technology contest period, for which the RMSE came to 0.78 GW. The RMSEs for 15 projections in this period are indicated in 
a box plot given as Figure 4-5. In a simple case in which no principal component analysis is conducted without selective 
ensembling, the median and the average for the 15 RMSEs come to 0.86 GW and 0.87 GW, respectively. If selective ensembling 
is conducted, the median and the average come to 0.83 GW and 0.85 GW, respectively. If a principal component analysis is 
conducted, they come to 0.81 GW and 0.83 GW, respectively. If both the principal component analysis and selective ensembling 
are conducted, the median falls further to 0.76 GW and the average declines to 0.78 GW. Given that the RMSE was 0.83 GW 
for Toshiba that won the highest award in TEPCO’s contest, our model was apparently able to achieve good forecasting 
performance at least for this forecasting period. We should note, however, that forecasting errors largely differ from season to 
season, meaning that comparison using a small data set may not achieve an appropriate assessment of a model’s overall 
forecasting performance. 

 

  
PCA: Principal component analysis, SE: Selective ensembling 

Figure 4-5  Forecasting errors for the Tokyo area (RMSE: Sep. 2 ‒ 10, 2017) 
 

4-1-2 Changes in forecasting errors depending on the input data 

 Changes in forecasting errors depending on the input data are indicated in Figure 4-6 (RMSE) and Figure 4-7 (MAPE). 
We conducted calculations using the following data: 

 
S: Training with data from April 1, 2016; forecasting using meteorological data at one location (Tokyo) 
M: Training with data from January 1, 2012; forecasting using meteorological data at one location (Tokyo) 
M2: Training with data from January 1, 2012; forecasting using meteorological data at two locations (Tokyo, Utsunomiya) 
MT: Training with data from January 1, 2012; forecasting using meteorological data at one location (Tokyo) 
L: Training with data from January 1, 2008; forecasting using meteorological data at one location (Tokyo) 
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As noted above, forecasts have been made here on 15 different initial conditions, and the average forecasting errors 
of the 15 forecasts are indicated in Figures 4-6 and 4-7. Noticeably, the RMSE changes with a standard error of around 0.03-0.04 
GW, and the MAPE with a standard error of around 0.1% depending on the initial values. 
 Differences between S, M and L represent gaps between sizes of data sets for training. In general, a model using a 
larger data set is expected to achieve better forecasting performance. If loads in far and latest past periods indicate different 
behaviors, however, including far past data may negatively affect forecasting performance. Noticeably, L includes data before 
the Great East Japan Earthquake and the Fukushima Daiichi nuclear power plant accident in 2011.  
 Comparison between S and M indicates that M features smaller errors than S in all cases. On an annual average basis, 
the RMSE is 1.33 GW for S against 1.16 GW for M. The MAPE is 2.7% for S against 2.3% for M. These results indicate that 
two years of data for training in S is not big enough and that data over a longer period of time for training can improve the 
forecasting accuracy. 
 Comparison between M and L indicates that L features smaller errors than M in January and September and greater 
errors in February and December. On an annual average basis, the RMSE and MAPE for M are almost the same as those for L, 
showing no statistically significant difference. This means that adding data before 2012 for training fails to improve forecasting 
performance significantly. However, further consideration must be given to whether the failure is attributable to the power 
consumption behavior change after the Great East Japan Earthquake or whether it simply means that using data over more than 
six years cannot improve forecasting performance. 
 The difference between M and M2 indicate the influence of an increase in the number of locations for the 
meteorological data. In general, using data at more locations can be expected to reduce forecasting errors. As shown by Figures 
4-6 and 4-7, however, M2 has larger errors than M in January, February, March and September but smaller errors in the other 
months. On an annual average basis, the RMSE is 1.16 GW for M against 1.15 GW for M2. The results do not indicate that the 
improvement is statistically significant. 
 MT represents a case in which actual meteorological data are used instead of weather forecast data, which means that 
this case does not represent “forecasting” results. As a matter of course, errors for MT are far lower than for M. On an annual 
average basis, the RMSE for MT is 0.9 GW against 1.16 GW for M and the MAPE for MT is 1.9% against 2.3% for M. Even 
for MT, however, errors in summer and winter tend to be greater than in spring and autumn. This indicates that while weather 
forecast errors are a major factor behind load forecasting errors, some other factors are behind larger forecasting errors in summer 
and winter. 

 

 
Figure 4-6  Change in forecasting errors (RMSE: Tokyo area) 
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Figure 4-7  Change in forecasting errors (MAPE: Tokyo area) 

 
 As indicated by Figures 4-6 and 4-7, the relative scale of forecasting errors between two models, M and M2, changes 
greatly from month to month. In January 2018, for example, M2 indicates a significantly larger error than M. However, it does 
not mean that M is a “better” model than M2. In July, for example, M2 indicates a significantly smaller error than M, and on an 
annual average basis, the two models have no significant gap. This means that it is desirable to use data sets that are as large as 
possible for comparing different models. At the same time, as far as M and M2 are concerned, it could be said that adding 
meteorological data at other locations than Tokyo and Utsunomiya, or weighting data for multiple locations with population or 
electric demand may improve forecasting performance throughout the year. 

 

4-2 Interregional comparison 

4-2-1 Examples of forecast results 

 This section provides forecast results for the June 20-29 period of 2018 in the 10 areas. As noted above, data from 
2012 were used for training in all areas other than Okinawa, and data from 2016 were used for Okinawa. Meteorological data at 
one location of each area were used for training and forecasting. 
 
(1) Hokkaido 
 In the Hokkaido area, the average load in the June 20-29 period stood at 3.07 GW, with the maximum load at 3.62 
GW recorded at 4 p.m. on June 29 (Friday) and the minimum at 2.58 GW at midnight on June 26 (Tuesday). As load fluctuated 
in a narrow range of about 1 GW in the period, it was supposed to be relatively easy to forecast load. The average RMSE came 
to a favorable level of 0.07 GW. On June 23 (Saturday) when the actual maximum temperature came to 26.2℃, 11.2℃ above the 
forecast level of 15℃, however, the RMSE stood at 0.095 GW with the MAPE at 2.4%, indicating worse forecasting accuracy than on the 
other days. Particularly between 10 a.m. and 5 p.m. when actual temperatures apparently deviated far from forecast levels, the 
RMSE stood at 0.15 GW indicating an underestimated forecast for a long time. At 11 a.m. on June 26 (Tuesday), a forecast 
indicated the largest deviation from an actual level. The maximum load at that time was 3.45 GW, about 0.23 GW more than the 
forecast level. This was because the unexpected load peak in the morning failed to be forecast. Similarly, forecasts deviated from 
actual levels on June 20 (Wednesday), 22 (Friday) and 27 (Wednesday), but on each of these days, the forecast maximum and 
minimum temperatures deviated little from the actual levels. If these exceptional peaks in the morning were triggered by 
temperature changes, forecasting accuracy may be improved by using 24 hourly temperature forecast data, rather than the 
maximum and minimum temperatures. 
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Figure 4-8  Actual and forecasted loads: Hokkaido area 

 
(2) Tohoku 
 In the Tohoku area, the average load in the June 20-29 period stood at 6.82 GW, with the maximum load at 8.1 GW 
recorded at 11 a.m. on June 29 (Friday) and the minimum at 5.94 GW at 1 a.m. on June 24 (Sunday). Load fluctuated in a 
relatively narrow range of 2 GW in the period. The average RMSE came to a favorable level of 0.13 GW, with the MAPE 
standing at 1.3%. The average MAPE indicated the highest accuracy among the 10 areas for the period. On June 26 (Tuesday) 
and 29 (Friday), the RMSE stood at 0.18 GW and 0.25 GW, with the MAPE at 2.1% and 2.7%, indicating that forecast levels 
deviated relatively largely from actual levels on these days. It can be said that on these two days, temperature changes in Sendai 
differed much from those in other locations, such as Niigata, which were not used for training the model. On June 26, for example, 
the maximum temperature fell by 4℃ from the previous day in Sendai while rising by 7.6℃ in Niigata. These underestimated forecasts on 
these two days came apparently as forecasting failed to cover load increases in other locations. As the Tohoku area is large and 
encompasses cities with different climate conditions, using meteorological data at only one location may fail to indicate load 
changes in other locations. 

 

 
Figure 4-9  Actual and forecasted loads: Tohoku area 

(3) Tokyo 
 In the Tokyo area, the average load in the June 20-29 period stood at 33.16 GW, with the maximum load at 47.27 
GW recorded at 2 p.m. on June 29 (Friday) and the minimum at 22.13 GW at 5 a.m. on June 24 (Sunday). The RMSE stood at 
0.81 GW, indicating the model’s good forecasting performance. On June 27 (Wednesday), however, the model forecast the 
maximum load at 42.57 GW slipping far below the actual level of 45.40 GW. The maximum and minimum temperatures on the 
day came to 31.7℃ and 24.9℃, deviating from the forecast levels of 30.0℃ and 23.0℃. This implies that the forecast load errors on these 
days are due mainly to the forecast weather errors. 
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Figure 4-10  Actual and forecasted loads: Tokyo area 

 
(4) Chubu 
 In the Chubu area, the average load in the June 20-29 period stood at 15.78 GW, with the maximum load at 21.30 
GW recorded at 2 p.m. on June 28 (Thursday) and the minimum at 9.97 GW at 6 a.m. on June 24 (Sunday). While the RMSE 
stood at 0.45 GW indicating generally good forecasting performance, forecast load levels slipped far below actual levels in the 
afternoons of Jun 25 (Monday), 26 (Tuesday) and 27 (Wednesday) (the average deviation came to 0.67 GW, with the maximum 
one at 1.24 GW). On the three days, the actual maximum temperatures were an average 1.5℃ higher than the forecast levels. 
Although the actual maximum temperature was 2.5℃ higher than the forecast level on June 27, the three-day average deviation was not 
more remarkable than the average for other days in the forecasting period. 
 Meanwhile, the actual maximum temperature remained at or below 30.0℃ until June 23 (Saturday) before rising to 31.1℃ 
on June 24 (Sunday) and 33.9℃ on June 25 (Monday) rewriting a year-to-date high for the second straight day. Given this 
temperature trend, forecasting errors during this period are supposed to have expanded due to the increase in air cooling demand 
along with the rapid temperature rises. 

 

 
Figure 4-11  Actual and forecasted loads: Chubu area 

 
(5) Hokuriku 
 In the Hokuriku area, the average load in the June 20-29 period stood at 3.33 GW, with the maximum load at 4.40 
GW recorded at 11 a.m. on June 29 (Friday) and the minimum at 2.32 GW at 7 a.m. on June 24 (Sunday). While the RMSE 
stood at 0.12 GW indicating good forecasting performance, forecast load levels were far higher than actual levels in the afternoon 
of June 29 (Friday). At 4 p.m. on the day, the actual load stood at 4.01 GW, far below the forecast level of 4.51 GW, indicating 
the largest overestimate in the period. The day’s actual maximum temperature stood at 30.7℃ against the forecast level of 34.0℃, 
indicating that a weather forecast error led to a large load forecast error. 
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Figure 4-12  Actual and forecasted loads: Hokuriku area 

 
(6) Kansai 
 In the Kansai area, the average load in the June 20-29 period stood at 16.81 GW, with the maximum load at 23.19 
GW recorded at 2 p.m. on June 28 (Thursday) and the minimum at 1.16 GW at 1 a.m. on June 24 (Sunday). The RMSE stood 
at 0.70 GW with the MAPE at 3.0%, indicating slightly worse forecasting accuracy than in other regions. Particularly between 
9 a.m. and 6 p.m. on June 25 (Monday), 26 (Tuesday) and 27 (Wednesday), forecast load levels were far lower than actual levels. 
 A factor behind the large deviation for the three days may be that actual maximum temperatures were an average 
2.1℃ higher than forecast levels. Furthermore, the daily maximum temperature remained at or below 30.0℃ until June 24 (Sunday) 
before rising to 33.1℃ on June 25 (Monday) rewriting a year-to-date high and standing at 31.6℃ on June 26 (Tuesday) and at 33.5℃ 
on June 27 (Thursday), suggesting that the model failed to accurately forecast a rapid increase in air cooling demand. 

 

 
Figure 4-13  Actual and forecasted loads: Kansai area 

 
(7) Chugoku 
 In the Chugoku area, the average load in the June 20-29 period stood at 6.79 GW, with the maximum load at 8.76 
GW recorded at 2 p.m. on June 28 (Thursday) and the minimum at 5.06 GW at 1 a.m. on June 24 (Sunday). Maximum load 
levels were more than forecast levels for six days from June 24 (Sunday) to 29 (Friday), leading the MAPE to stand at 2.8% 
representing the eighth highest accuracy among the 10 areas. The relatively large error may be attributable to wild fluctuations 
in daily maximum temperatures and forecast temperatures’ deviation from actual levels. The daily maximum temperature rose 
by as much as 4.0℃ from the previous day to 31.1℃ on June 25 (Monday), the highest for the calendar day since 2012, before falling by as 
much as 5.0℃ to 26.1℃ on June 26 (Tuesday). The actual maximum temperature was 2.9℃ higher than forecast on June 26 (Tuesday) 
and 2.7℃ lower on June 28 (Thursday). The actual minimum temperature was 2.2℃ lower than forecast on June 24 (Sunday) and 
2.4℃ higher on June 29 (Friday). 
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Figure 4-14  Actual and forecasted loads: Chugoku area 

 
(8) Shikoku 
 In the Shikoku area, the average load in the June 20-29 period stood at 3.13 GW, with the maximum load at 4.26 GW 
recorded at 2 p.m. on June 28 (Thursday) and the minimum at 2.23 GW at 7 a.m. on June 24 (Sunday). The forecast load was 
lower than the actual on June 20 (Wednesday), 25 (Monday), 26 (Tuesday) and 27 (Wednesday). On June 20 (Wednesday), the 
maximum temperature came to 23.7℃ against the forecast level of 25℃, indicating that a weather forecast error led to a large load forecast 
error. On June 25 (Monday), 26 (Tuesday) and 27 (Wednesday), maximum temperature levels were 3-5℃ higher than the 2012-
2017 averages for these days, suggesting that cooling demand emerged earlier than normal, leading to load forecast errors. 
 

 

 
Figure 4-15  Actual and forecasted loads: Shikoku area 

(9) Kyushu 
 In the Kyushu area, the average load in the June 20-29 period stood at 9.97 GW, with the maximum load at 12.73 
GW recorded at 1 p.m. on June 27 (Wednesday) and the minimum at 7.19 GW at 1 a.m. on June 24 (Sunday). Actual load levels 
deviated far from forecast levels for five days from June 22 (Friday) to June 26 (Tuesday), leading the MAPE to stand at 3.6%, 
the worst among the 10 areas. On June 23 (Saturday), the actual maximum temperature came to 24.5℃, 6.5℃ lower than the 
forecast level of 31℃, resulting in an overestimated load forecast. On June 22 (Friday), 23 (Saturday), 25 (Monday) and 26 (Tuesday), rain 
came despite no-rain forecasts, suggesting that unstable weather conditions contributed to worsening the forecasting accuracy. 

 

 
Figure 4-16  Actual and forecasted loads: Kyushu area 
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(10)  Okinawa 
 In the Okinawa area, the average load in the June 20-29 period stood at 1.16 GW, with the maximum load at 1.41 
GW recorded at 3 p.m. on June 28 (Thursday) and the minimum at 0.88 GW at 3 a.m. on June 23 (Saturday). In this area that 
features an annual average MAPE at 3.0%, the largest among the 10 areas, as explained later, the period’s MAPE was limited to 
a relatively good level of 1.7%. This may be because daily load curves are similar or stable in the period. However, the forecast 
load was slightly less than the actual on June 24 (Sunday) and slightly more on June 25 (Monday). Nevertheless, the maximum 
and minimum temperatures’ deviations from forecast levels were limited to less than 1℃ on the two days. Although meteorological 
data in Naha alone were used for forecasting load this time, in Okinawa that comprises a large number of small islands, an 
interesting challenge is to explore how using data at more locations could improve the load forecasting performance. 
 

 

 
Figure 4-17  Actual and forecasted loads: Okinawa area 
 

4-2-2 Changes in monthly forecasting errors 

 Monthly load forecasting errors (MAPE) in the 10 areas are given in Table 4-1 and Figure 4-18. As indicated here, in 
most of the areas, MAPE is larger in summer (July and August) and winter (January and February). Among the areas, Tohoku 
features a remarkably small MAPE of 1.4% against relatively larger MAPE in Chugoku, Kyushu and Okinawa. The larger 
MAPE for Okinawa may be partly explained by the limited range of data for training. As suggested by Figure 4-19, MAPE is 
larger during daytime and smaller during nighttime. Noticeably, daily error curves in Hokkaido and Okinawa differ significantly 
from those in other areas. 
 Hokkaido, Hokuriku, Kansai and Kyushu Electric Power Companies provide past forecast load data in their 
respective service areas on their respective websites. For the period between July 2017 and June 2018, the MAPE stood at about 
3.1%, 2.4%, 2.5% and 2.4%, respectively. Given that their forecasts were made at different time points, these MAPE levels 
cannot be compared directly with each other. Furthermore, attention must be paid to the fact that electric utilities tend to set load 
forecasts at higher levels from the viewpoint of stable electricity supply12). Given that our forecasts for this paper are made in the 
morning on Day d or earlier than electric utilities’ forecasts and based on a limited range of input data, however, the average 
MAPE just below 2.5% given in Table 4-1 can be interpreted as indicating fairly good forecasting performance. 
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Table 4-1  Forecasting errors by area and month (MAPE) 

 
 

  
Figure 4-18  Forecasted errors by area and month (MAPE) 

 

  
Figure 4-19  Forecasted errors by area and hour of the day (MAPE) 

 
 Figure 4-20 indicates the distribution of regional percentage forecasting errors (the absolute differences between 
forecast and actual data divided by actual data). The graph gives a forecasting percentage error for 131,400 data (365 days × 24 
hours × 15 computations) rounded to one decimal place for each area, representing a relative frequency of the percentage errors. 

2017 2018
Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun.

Hokkaido 2.8% 2.1% 2.3% 2.2% 2.4% 2.5% 2.5% 2.3% 3.0% 2.6% 2.1% 1.8% 2.4%
Tohoku 2.0% 1.8% 1.4% 1.0% 1.2% 1.5% 1.6% 1.9% 1.7% 1.1% 0.9% 1.2% 1.4%
Tokyo 3.4% 3.9% 1.9% 1.9% 1.8% 2.0% 2.6% 2.8% 2.2% 1.6% 1.8% 2.1% 2.3%
Chubu 2.2% 3.8% 2.6% 2.2% 1.7% 2.2% 2.9% 1.9% 2.0% 2.0% 2.1% 1.6% 2.3%

Hokuriku 3.0% 3.0% 2.1% 1.6% 2.5% 2.7% 3.0% 2.9% 2.6% 2.0% 2.2% 2.2% 2.5%
Kansai 2.6% 3.7% 2.4% 2.3% 1.9% 1.9% 2.5% 2.4% 2.1% 1.8% 1.7% 2.3% 2.3%

Chugoku 3.3% 3.9% 3.0% 2.3% 2.3% 2.5% 3.0% 2.5% 2.6% 2.2% 2.8% 2.4% 2.7%
Shikoku 3.0% 3.0% 2.6% 2.3% 2.0% 2.7% 3.1% 2.8% 2.5% 2.0% 1.9% 1.9% 2.5%
Kyushu 2.7% 3.8% 3.3% 2.6% 2.0% 2.5% 3.1% 2.9% 2.6% 2.4% 2.0% 2.7% 2.7%
Okinawa 2.3% 2.4% 3.8% 3.9% 2.7% 2.3% 2.8% 3.6% 2.4% 2.6% 3.6% 3.2% 3.0%
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The distribution is wider in Okinawa and narrower in Tohoku. In most of the regions, forecasting error rates remain within a 
range between -5% and +5%.  

  
Figure 4-20  Distribution of percentage errors by area 

 
 Worthy of attention is the fact that load fluctuations are wilder in summer and winter that feature greater forecasting 
errors. Figure 4-21, which locates each month’s standard deviation of load divided by the annual average load on the abscissa 
and each month’s average MAPE on the ordinate, indicates their correlation. Given the correlation, the smaller forecasting error 
in Tohoku may partly be explained by the fact that load fluctuations in the area are smaller than in other areas (see Appendix 2). 
Unlike other areas, Hokkaido features larger errors in March than in January or February. This may be related to the region’s 
standard deviation of load in March that is larger than in January or February.  

 

 
Figure 4-21  Correlation between MAPE and the standard deviation of electric load 

 Conclusion 

  For this paper, we attempted to forecast short-term load for the 10 areas in Japan by using an artificial neural network 
utilizing meteorological data at one location of each region. The load forecasting task here was divided into three steps, and 
selective ensembling was conducted at each step for accurate forecasting. Forecasting errors were larger for summer and winter 
featuring wilder load fluctuations and smaller for spring and autumn. Errors were smaller for Tohoku and larger for Chugoku 
and Kyushu. Months seeing larger errors in Hokkaido and Okinawa differed from those in other regions, indicating regional 
characteristics. 
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 The ANN model used here may have potential to further improve its forecasting performance by expanding input 
data to include humidity and forecast hourly temperature data, by utilizing meteorological data at more locations and by 
increasing the number of selective ensembling. As indicated by this paper, however, a model that indicates good forecasting 
performance on a specific data set does not necessarily perform well constantly. This suggests that careful consideration is 
required for comparing merits of forecasting models and that as much data as possible should be utilized for assessment. Given 
that some models are suitable for some seasons and unsuitable for others, a forecasting model using an ANN with the techniques 
described in this paper may be combined with other techniques to further improve the forecasting performance. Meanwhile, 
selective ensembling is effective for improving the forecasting performance and may be applicable for other forecasting tasks. 
 At the same time, even if the model is significantly improved with more advanced techniques, forecasting errors in 
summer and winter may still be large. Although the number of days seeing large forecasting errors is limited, with most of such 
errors being attributable to weather forecast errors3, the results of this paper suggests that weather forecast errors are not the only 
factor behind load forecasting errors. Exploring factors behind errors to further improve the forecasting performance is one of 
the key future research challenges. 
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Appendix 1 Load forecasting model using principal component analysis (PCA) and selective 
ensembling 
 

Appendix 1-1 Artificial Neural Network (ANN) 

 In general, the ANN comprises input and output layers and one or multiple median layers, as indicated by Figure 2-
1. If the input data are expressed as an N0-dimensional vector y0 = X , and the n-th hidden layer as an N0-dimensional vector yn, 
we can sequentially calculate output data yout = yM+1 from input data X by the following equation: 

ା࢟  ൌ ݂ሺ࢟࢝   ሻ    n∈{0, 1, …, M} (A1)࢈

 Here, f represents a nonlinear function called an activation function. Matrix wn and vector bn are parameters called 
weights and biases, respectively. The nonlinear nature of the activation function allows complex systems to be modelized for 
highly accurate forecasting. 
 Massive sets of input data X and output data (or “teacher” data) Y are prepared as data for the training of the neural 
network. Then, wn and bn are optimized to minimize the difference between the output and the teacher data (in most cases, a 
square Euclidean distance between yout and Y is adopted as the difference). In general, a gradient descent method is here used to 
solve this optimization problem, and various variations of gradient descent methods have been proposed to efficiently find the 
optimal point. The gradient descent method first sets the initial wn and bn values randomly and descends the gradient to find 
optimum wn and bn values. Here, attention must be paid to the point that results differ depending on the initial values. The number 
of hidden layers M and the number of each layer’s neurons Ni are hyperparameters to define the model. Because there is no 
established method to set these parameters, they must be set through trial and error. The model for this paper used the softplus 
function defined as f(x) = log ( 1 + ex ) as the activation function, and set M and Ni at 3 and 30, respectively. We used Adam13) as 
the gradient descent method. 

 

Appendix 1-2 Principal component analysis to analyze daily load curves 

 The principal component analysis (PCA) is a method widely used to extract major features from massive data. Given 
here is a data set having m variables x1, x2, …, xm (i.e., n set of m-dimensional data X1, X2, …, Xn, Xk= [x1

(k), x2
(k), …, xm

(k)] and k
∈[1, 2, …, n]). Define a linear combination z1 of these variables as follows: 

ଵݖ  ൌ ଵݔଵଵݓ  ଶݔଶଵݓ  ⋯   (A2)ݔଵݓ

 When the coefficients wi1 (i = 1, 2, …, m) are determined to maximize the variance of z1 on condition of w11
2+w21

2+ 
… +wm1

2=1, z1 is called the first principal component (PC). In the same way, if the coefficients of the linear combination z2 = 
w12x1 + w22x2 + … + wm2xm are determined to maximize the variance of z2 under the condition w12

2+w22
2+ … +wm2

2=1 in the m-
1-dimensional space orthogonal to z1, z2 is called the second PC. If this procedure is iterated to prepare up to the i-th PC (i < m) 
and the data set is approximated by these PCs precisely enough, the m-dimensional data set will have been successfully reduced 
into an i-dimensional space. Mathematically, PCs can be determined as the eigenvector of the covariance matrix. 
 Hourly electric load on a day can be considered a vector in a 24-dimensional space (m = 24). For example, load curves 
in the Tokyo area were subjected to PCA to illustrate 1st to 4th PCs (PC1-4) as shown on Figure A-1, allowing a load curve on a 
specific day to be approximated as a linear combination of these PCs, and the coefficients of the linear combination are called 
principal component scores (PC scores). In the model used for this paper, the four PC scores for each of all past days were 
calculated for learning to forecast the four PC scores for the next day. This dimension reduction can significantly improve the 
forecasting performance14 , 15). 
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Figure A-1  Principal components (Tokyo area) 

 
 In the field of machine learning, it is known that an autoencoder can be used for dimension reduction to further 
generalize the PCA method. Therefore, the autoencoder may have been used instead of PCA to develop a model that would 
achieve the same or better forecasting performance. As far as an electric load analysis is concerned, however, the cumulative 
proportion of the four PCs shown in Figure A-1 exceeds 99%, allowing PCA to enable a considerably accurate approximation. 
For this reason, we used the PCA method for the model. 

 

Appendix 1-3 Selective ensembling 

 It is widely recognized that when machine learning is used for forecasting, adopting the ensemble average of results 
from multiple models rather than results from a single model can improve the forecasting performance. Taking advantage of this, 
many studies have attempted more advanced “ensemble learning” (such as bugging or boosting) methods in which multiple 
models are efficiently trained for more accurate forecasting. 
 In contrast, Zhou et al. (2002)16) indicated that “selective ensembling” could improve the forecasting or classifying 
performance. Instead of simply averaging results from multiple models for making forecasts, the selective ensembling method 
assessed model output errors for the validation data before forecasting, excluded models producing large errors and used the 
remaining models for taking an ensemble average. Zhou et al. used the genetic algorithm to select models to be excluded. 
 The approach we used for this paper sets the validation data on which the output errors are significantly correlated to 
forecasting errors, and then selects the models used for forecasting. It could be called the “empirical selective ensembling” 
method. Assume a school class of 40 students. While the Zhou et al. approach excludes several dull students and adopts the 
average of the remaining students’ answer as the final one, our approach adopts the average of answers only from several smart 
students, preparing beforehand the standards which can efficiently decide whether any specific student is smart or dull. 
 Our approach is based on the following observation regarding the STLF. If the validation data are randomly selected 
among the training data as done for many machine learning models, no significant correlation is seen between errors in the 
validation and the test (forecasting) data. If the data for the latest several days right before the test data are adopted as the validation 
data, however, significant correlations are seen between the errors for the validation and the test data. The contrast may be 
attributable to a gap between periods for training and forecasting for the STLF. The forecasting targets of STLF are day-ahead 
loads, while the training period extends to several years. Although training the model with data over a longer past period results 
in higher forecasting performance in general, it may also be well expected that load data three years ago may not be as useful as 
those three days ago for forecasting tomorrow data. 
 Our procedure is given below: When load in January 2018 are used as test data for assessing the forecasting 
performance, data for the latest nv days (if nv is 10, data for December 22-31, 2017) are adopted as the validation data and earlier 
data (until December 21, 2017) as the training data. The training data are used to train models from nT sets of initial conditions 
and the errors on the validation data are assessed using the nT models obtained. Then, nS (1≦nS≦nT) models with the smallest 
errors are selected, where nS is determined to minimize average output errors on the validation data. Finally, the mathematical 
average of forecast values of the nS models is adopted as the final forecast. 
 As indicated by the name “empirical selective ensembling,” nv is set empirically. While a smaller nv may destabilize 
assessment, a too-high nv value may cover data on days having little correlation with test data and reduce the effect of the selection. 
Here, we set nv at 30. As a matter of course, if the nT value is larger (if excellent students are selected from all 200 students of the 
same grade rather than from 40 students in a class), the forecasting performance may be better, which we can confirm by 
numerical experiments. This represents a tradeoff with a longer computation time. For this paper, we set nT at 20. 
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Appendix 1-4 Structure of the STLF model 

 This paper represents assessment using a short-term load forecasting model that utilizes PCA and selective 
ensembling. Here, the following data are adopted as input data for the model to forecast 24-hour load data on Day d+1 at 8 a.m. 
on Day d: 
 

Electric load data: Day d-1 (24-hour data), Day d (until 7 a.m.) 
Calendar data (year, month, day, day of week, national holiday): Days d-1, d, d+1, d+2 
Meteorological data (maximum temperature, minimum temperature, weather description): Day d-1 
Weather forecast data (maximum temperature, minimum temperature, weather description): Days d-1, d, d+1 
 

 Natural numbers of the calendar data (years, months and days) and the maximum and minimum temperatures in 
degrees Celsius are used as they are. Among the days of week, Sunday is set as 0, Monday as 1, Tuesday as 2, Wednesday as 3, 
Thursday as 4, Friday as 5 and Saturday as 6. National holidays, December 29-31, January 1-3 and August 13-16 are set as 1 
and the other days as 0. As for weather description, four binary variables representing sunny (or clear) (W1), rainy (W2), cloudy 
(W3) and snowy (W4) days are prepared. If the weather description published by the Japan Meteorological Agency (JMA) 
includes any of these words, each of the variables is set as 1, and 0 otherwise. For example, if a day’s weather description is 
“clear, occasionally cloudy, temporarily snowy, with snowstorm,” the variables are given as W1=W3=W4=1 and W2=0. For the 
weather forecast data, we used those obtained in the morning on the previous day. All values are standardized according to the 
following equation: 

 

௧ݔ  ൌ
ܺ௧ െ തܺ

ܺ௫ െ ܺ
 (A3) 

 Here, Xt stands for the original value. തܺ , Xmax and Xmin are the mean, maximum and minimum values of Xt., 
respectively. 
 The model is outlined by Figure A-2. 

 
 

 
Figure A-2  Short-term load forecasting model using PCA and selective ensembling 
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 As indicated here, the forecasting task is divided into three steps. In the first step, the model forecasts the average load 
between 0 a.m. and 7 a.m. on Day d+1, given as h7,d+1. In the second step, h7,d+1 is added to input data, with the 1st to 4th PC scores 
until Day d-1 adopted as input data, to forecast PC scores for Day d+1. After obtaining an approximate load curve for Day d+1 
from the forecast PC scores, we added the curve to input data in the third step to forecast 24-hour load data for Day d+1. In each 
step, the selective ensembling method was applied with nT at 20. On average, forecast load data tended to slip slightly below 
actual data in a biased manner. So, we assessed the 24 hourly average forecasting error for 30 days before the day, and subtracted 
the values from final output hourly loads. This adjustment allowed the MAPE to fall by 0.1 percentage points on average for 
most of the areas. 
 In addition to PCA, there are other various methods to analyze load curves, including the discrete Fourier transform, 
k-means and fuzzy c-means. More simply, daily, morning and afternoon average load data may be adopted as input data, instead 
of PC scores, to forecast 24-hour data. Among the methods we tried, the discrete Fourier transform method and a method using 
morning and afternoon averages produced forecasting results that are as excellent as or slightly worse than those from PCA, 
while the fuzzy c-means method produced only worse results. It is not easy, however, to compare merits of models. The 
assessment of modelling techniques suitable for different seasons and different load curve shapes is left as an interesting challenge 
for the future. 
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Appendix 2 Average daily load curves by area 
 
 Figure A-3 indicates spring (March-May), summer (June-August), autumn (September-November), winter 
(December-February) and annual average daily load curves in each area during April 1, 2017, and March 31, 2018. In most of 
the areas, load is larger in summer and winter and smaller in spring and autumn. It is smaller in summer in Hokkaido and in 
winter in Okinawa, indicating regional differences. Load in spring is smaller than in autumn. This may be partly explained by 
hysteretic human practices to use air conditioners differently even at the same temperatures. 
 

 
 

 
Hokkaido                                          Tohoku 

 
   

 
 

Tokyo                                            Chubu 
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Hokuriku                                            Kansai 

 
  

  
Chugoku                                         Shikoku 

 

  
Kyushu                                         Okinawa 

Sources: Websites of former general electric utilities 
Figure A-3  Average daily load curve by area and season (Apr. 2017 ‒ Mar. 2018) 
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