

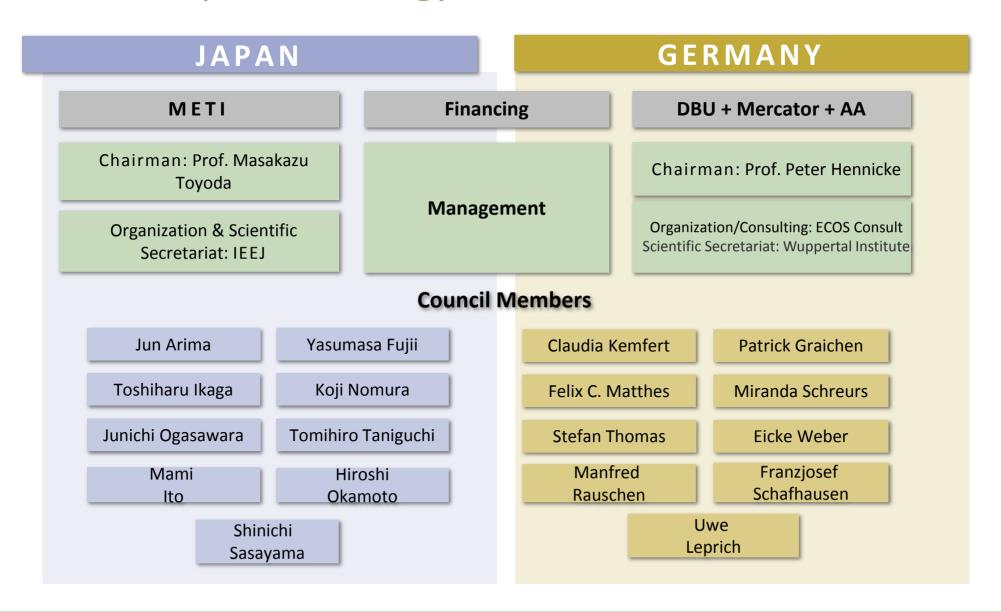
German-Japanese Energy Transition Council

The importance of international cooperation under disruptive change

Recommendations and lessons learnt from a fruitful German-Japanese dialogue on the energy transition

Monday, 10th September 2018

Institute of Energy Economics, Japan (IEEJ), Tokyo



Structure of the GJETC

German – Japanese Energy Transition Council

Output and results

(http://www.gjetc.org)

- 4 comprehensive German-Japanese studies (total of 800 pages)
- 10 Input and topical papers, technology overview
- 3 Stakeholder Dialogues (industry, decentralized and efficiency sector)
- Recommendations "Report 2018"

Japan

Inventory

Transformation Analysis

National Recommendations Germany

Inventory

Transformation Analysis

National Recommendations

Comparative Analysis
Lessons Learned

Transferability

Dissemination

Final Report

New Allocation of Roles and Business Segments of Established and new Participants in the Energy Sector Currently and Within a Future Electricity Market Design (Topic 3)

Project Duration: 12/2016 - 11/2017

Client:

German Japanese Er

Contractor

IZES gGmbH Institut für Zukunl Stoffstromsysteme Scientific Director: Prof. Frank Baur

Project Manager: Dr. Patrick Matschoss Altenkesseler Str. 17 66115 Saarbrücken Tel.: +49-(0)681-844 9 Fax: +49-(0)681-76179

Authors: Dr. Patri Guss (all IZES gG

Saarbrücken and

The G20 states

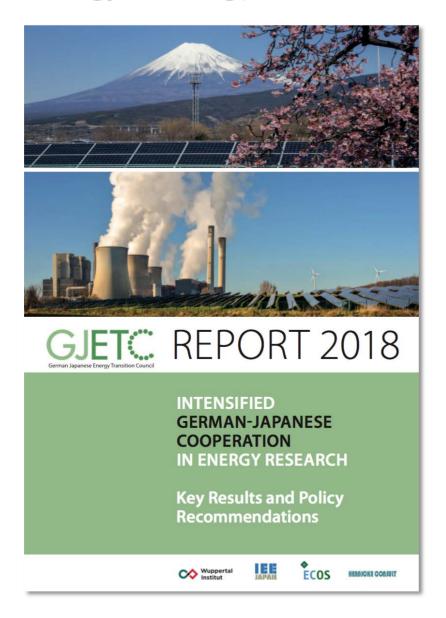
Selected official energy and climate targets:
Renewable Energy, Energy Efficiency and GHG (CO₃) emissions

Topical Paper 1

GJET:

German-Japanese Energy Transition Council

4 comprehensive studies



Topic	Contractor
ST 1 Energy transition as a central building block of a future industrial policy - Comparison and analysis of <u>long-term energy transition</u> scenarios	Wuppertal Institut (DE) DIW Econ (DE) IEEJ (JP)
ST 2 Strategic framework and socio-cultural aspects of the energy transition	IZES (DE) Arepo Consult (DE) IGES (JP) Nagoya University (JP)
New allocation of roles and business segments of established and new participants in the energy sectors currently and within a future electricity market design	IZES (DE) JEPIC (JP)
ST 4 Energy end-use efficiency potentials and policies and the development of energy service markets	Ecofys (DE) IAE (JP)

Output and results

(http://www.gjetc.org)

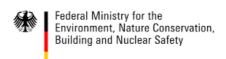
GJETC Report 2018
Intensified GermanJapanese Cooperation in
Energy Research

Key Results and Policy Recommendations

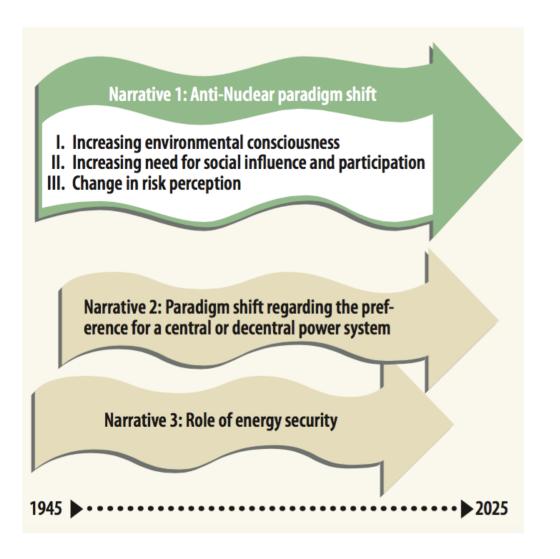
Funding and supporting the GJETC

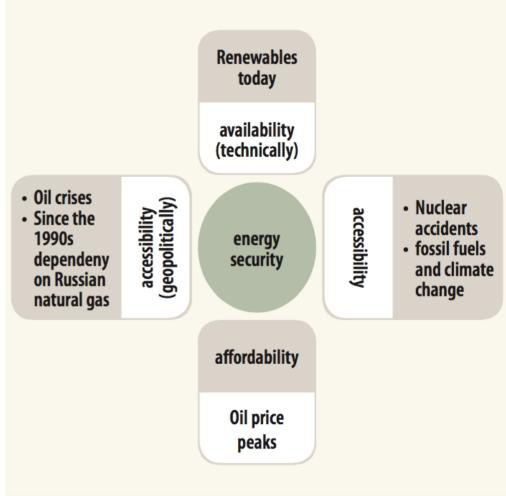
Organization

Funding



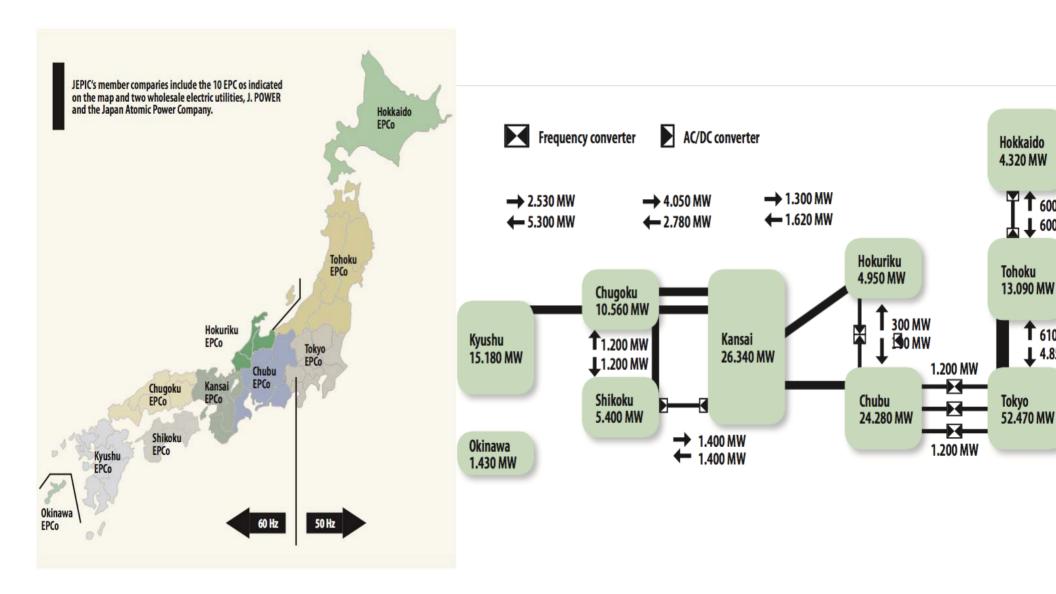
Support




Planned 2nd phase (2018-2020):

Up-scaling activities; financial support e.g. by foundations, ministries and renowned company partners

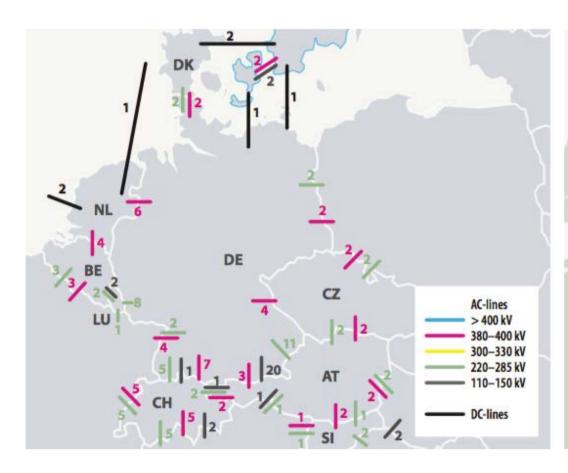
The history and the narratives

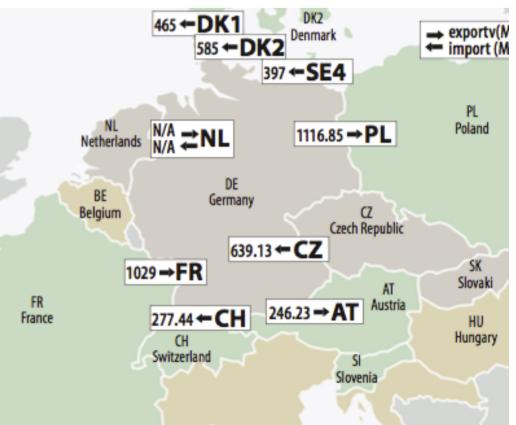

Social shifts underlying the "anti-nuclear-movement" narrative (Source: IZES/Arepo Consult/IGES/Nagoya University/NIES 2017)

Energy security (Source: IZES/Arepo Consult/IGES/Nagoya University/NIES 2017) Energy security (Source: IZES/Arepo Consult/IGES/Nagoya University/NIES 2017)

Basic geographical frame conditions (J)

1 600 MW




Ten electric utilities and their areas in Japan (Source: IZES/JEPIC 2017)

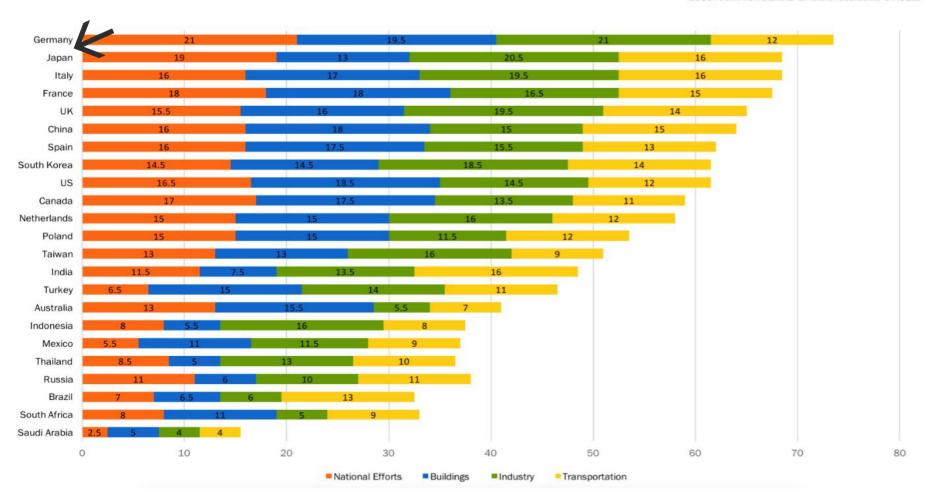
Transfer Capacity and Maximum Electricity Demand Forecast in Japan (Source: IZES/JEPIC 2017)

Basic geographical frame conditions (G)

Cross-border transmission lines (as of end 2016) in Germany (Source: IZES/JEPIC 2017)

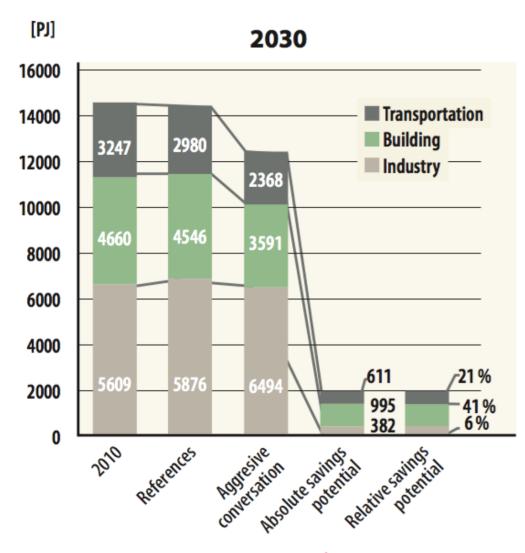
German cross-border flows with neighboring countries (Source: IZES/JEPIC 2017)

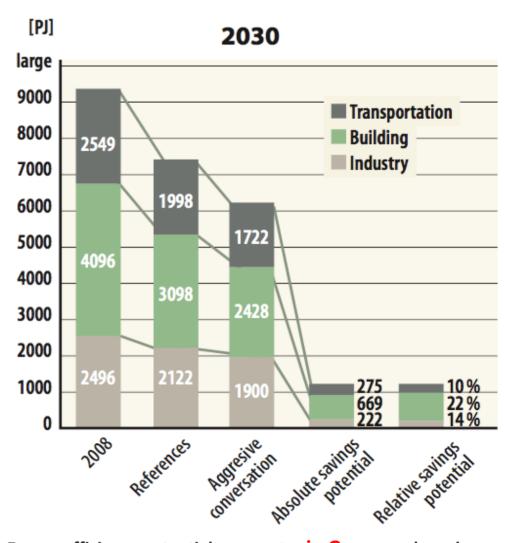
Comparing longterm perspectives



	GERMANY			JAPAN		
	ZS	KS 80	KS 95	METI (2012) multiple models and scenarios	IEEJ (2015) multiple scenarios	RITE (2015) multiple scenarios
Energy demand reductions						
Final energy demand reductions through energy efficiency	Strong reductions	Strong reductions	Very strong reductions	Reductions Moderately	Reductions	Reductions
Final energy demand reductions through behavioural changes	Not considered	Not considered	Moderately considered	considered	Moderately considered	Moderately considered
Changing the use of energy sources						
Increased use of domestic renewable energy sources	Strong use	Strong use	Strong use	Moderate use	Moderate use	Moderate use
Phasing out the use of nuclear power	Complete phase-out	Complete phase-out	Complete phase-out	Yes (in some scenarios)	Yes (in some scenarios)	Yes (in some scenarios)
Continuing the use of nuclear power	No	No	No	Yes	Yes	Yes
Substitution of fossil fuels through electricity	Strong substitution	Very strong substitution	Very strong substitution	Moderate substitution	Moderate substitution	Moderate substitution
Use of renewable energy based H2 or synthetic fuels as final energy carriers	No use (until 2030)	No use (until 2030)	No use (until 2030)	No use	No use	No use
Importing low-carbon or carbon-free e	nergy sources/carri	iers				
Net imports of electricity	No net imports	No net imports	Moderate net imports	No trade	No trade	No trade
Net imports of bioenergy	No imports (until 2030)	No imports	No imports	No imports	No imports	No imports
Net imports of H2 or synthetic fuels	No imports	No imports	No imports (until 2030)	No imports	No imports	No imports
Using CCS						
Use of CCS technology to reduce industrial GHG emissions	Not used	Not used	Starting to be used in 2030	Not used	Not used	Not used
Use of CCS technology to reduce power sector GHG emissions	Not used	Not used	Not used	Not used	Not used	Yes

Starting as "best in class" – more is possible




Germany and Japan on top of an efficiency rating (Source: ACEEE 2017)

Closing the efficiency gap

Energy efficiency potentials per sector in Japan based on a comparison of policy scenarios: Potential = difference between Reference 2030 and Aggressive Conservation 2030 (Source: ecofys/IAE 2017)

Energy efficiency potentials per sector in Germany based on a comparison of policy scenarios: Potential = difference between Reference 2030 and Aggressive Conservation 2030 (Source: ecofys/IAE 2017)

Key recommendations

Joint effort to decarbonize the energy system

Efficiency and sufficiency

Joint scenario modeling

Robust and accountable target/goal, strategies, and the corresponding policy mix

Energy renovation of building

Continuous evaluation and involvement of all stakeholders

Restructuring the electricity and gas sector

Energy efficiency governance

Disseminating low-carbon technologies to other countries

Renewable energies and system integration

Integrate energy and resource efficiency policy

Bilateral agreement on an educational exchange program

Centralized and decentralized energy system

Thorough analysis and periodical review

Value of GJETC

Scientifically independent

Continuity and depth of research

Dialogue on controversial topics

Dissemination for better informed decision-making

Joint development and deployment of innovations

Deepening of personal network

What next?

Continue and extend our beneficial joint activity!

Benefit for Germany and Japan

 Gain useful lessons from each other that enable and accelerate the energy transitions in both our countries.

Benefit for other countries

 Establish GJETC as an international role model for bilateral cooperation.

Thank you very much for your attention!

http://www.gjetc.org/

Monday, 10th September 2018