



# GHANA'S ENERGY SECTOR POLICIES PRESENTATION

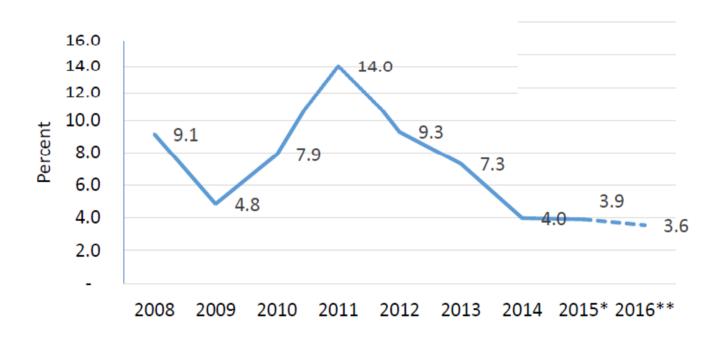
Energy Policy (B) Training by JICA
Angela Rhoda Naa Ardua Nunoo
(Programme Officer, Ministry of Energy)

# OUTLINE

- General information
- Energy reserves
- Current energy policy and measures
- Past energy demand and supply (at least past 10 years)
  - Energy demand by sector
  - Demand and supply by energy
  - Energy Prices
- Outlook of energy demand and supply
- Energy-related investment for domestic and overseas
- Challenges in formulating energy policies
- Areas of interest



# GENERAL INFORMATION COUNTRY PROFILE


| • | Region                         | 2015 | West Africa      |
|---|--------------------------------|------|------------------|
| • | Surface area (sq. km)          | 2014 | 238537           |
| • | Population (projection, 000)   | 2016 | 28033            |
| • | Population density (per sq km) | 2016 | 123.2            |
| • | Capital city                   | 2015 | Accra            |
| • | Capital city population (000)  | 2015 | 2277             |
| • | Currency                       | 2015 | Ghana Cedi (GHS) |

**Source: United Nations Statistical Division 2017** 



# GENERAL INFORMATION CONT'D COUNTRY PROFILE

#### Annual Real GDP Growth (Percent), 2008-2016



Source: GSS/MOF

# POLICIES AND STRATEGIES FOR THE ENERGY SECTOR

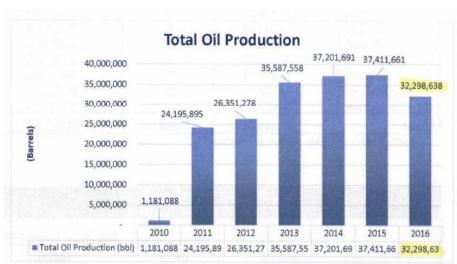
Ghana Shared Growth and Development Agenda (GSGDA) I & II

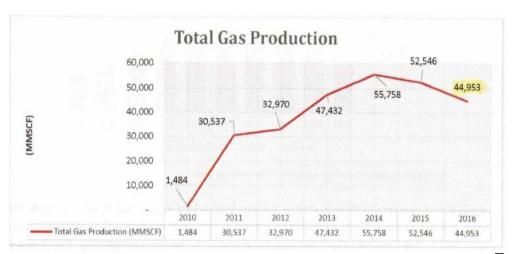
National Energy Policy (2010)

Energy Sector Strategy and Development Plan (2010)

SE4ALL Action Agenda (2012)

# POLICIES AND STRATEGIES FOR THE ENERGY SECTOR CONT'D


- Petroleum Sector Policies within the National Energy Policy (2009-2015)
- Petroleum Sector Strategies within the National Energy Strategy
- (2009-2015)
- Local Content Policy for Petroleum Upstream(2010)
- Natural Gas Pricing Policy (2012)
- Gas Master Plan
- Petroleum Downstream Deregulation Policy
- Zonalization Policy on Petroleum Product Distribution
- Draft Medium Term Plan (2014-2017)
- Draft Local Content Policy for Petroleum Downstream
- Rural LPG Promotion Policy (Draft)


# **ENERGY RESERVES**

### **□**Petroleum reserves

| Producing Field    | Component                    | Estimated Recoverable Reserve                          | Oil Produced (2016)                                                                                                                                                                                |
|--------------------|------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jubilee Production | crude oil & gas              | 618 mmbo and 505 billion cubic feet<br>(Bcf) of gas    | <ul> <li>Total production 26,981.641 barrels with an average daily production of 73,720bopd</li> <li>Total crude from inception November 28, 2010 to December 31, 2016 was 188.91mmbbls</li> </ul> |
|                    |                              |                                                        | Total of 38,421MMscf of associated gas                                                                                                                                                             |
| TEN Development    | crude oil & gas              | 240 mmbo and 3.96bcf of gas                            | <ul> <li>Oil Production commenced on 17th August, 2016</li> <li>Total of 5.32mmbbls with an annualized daily average production of 15, 824bbl/d and gas production of 6,532MMscf</li> </ul>        |
| Sankofa Gye Nyame  | crude oil & condensate & gas | 204 MMbbls of oil and condensate, and 1,071 bcf of gas | Oil production official commencement 7 <sup>th</sup> July, 2017                                                                                                                                    |

Source: Ghana National Petroleum Corporation, Ghana's Upstream Oil and Gas Industry, March 2017





## **CURRENT ENERGY POLICY**

#### **□**Policy Goals under the GSGDA II

#### > Power

- Provide adequate, reliable and affordable energy to meet the national needs and for export
- Achieve universal access by extending electricity to all communities by 2020
- Achieve economically efficient tariffs by 2016



• Increase the proportion of renewable energy (solar, bio-mass, wind, small and mini-hydro and waste-to-energy) in the national energy supply mix

#### > Petroleum

- Ensure accelerated and integrated development of the oil and gas industry
- Ensure adequate availability of petroleum products in the Ghanaian market
- Ensure transparency in the management of petroleum resources





## CURRENT ENERGY POLICY AND MEASURES CONT'D

### ☐ Policy Goals under the GSGDA II

• Measures undertaken in the power, renewable and petroleum sub sectors

| Energy Sub Sector | Policy Objective                                                                                                                               | Strategies                                                                       | Activity/Project                                         | Achievements                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power             | Provide adequate, reliable and affordable energy to meet the national needs and for export                                                     | Increase power generation capacity to 5,000MW by 2016                            | Power Generation &<br>Transmission Capacity<br>Expansion | Generation: Installed capacity added • 220MW Kpone Thermal Power Project (KTPP) • 180MW first half of Asogli 360MW Phase 2 Project • VRA TT2PP (38 MW) expansion project. • 250MW Ameri Project                                                                                                                                                                               |
|                   |                                                                                                                                                | Develop a non-congested electricity transmission network by 2016                 |                                                          | Transmission Projects completed:  Tumu-Han-Wa 161kV line project  Prestea-Bogosu 161kV line project  161kV Kintampo Substation  330kV Tema-Tornu Interconnection line project                                                                                                                                                                                                 |
|                   | ,                                                                                                                                              | Ensure Universal Access to electricity by 2020                                   | Extension of electricity to un-electrified communities;  | 1,346 communities have been connected to the national grid at the                                                                                                                                                                                                                                                                                                             |
| Renewable         | Increase the proportion of renewable energy (solar, biomass, wind, small and mini-hydro and waste-to-energy) in the national energy supply mix | Increase the renewable<br>energy supply in national<br>energy mix to 10% by 2020 | Renewable Energy<br>Programme                            | <ul> <li>First 20MW solar PV installation by an Independent Power Producer (IPP) was commissioned and is currently feeding power into the national grid</li> <li>41,000 lanterns were distributed at subsidized rate to off-grid communities</li> <li>Completed the development and installation of five (5) units of minigrids electrification project on islands</li> </ul> |
| Petroleum         | _                                                                                                                                              | Accelerate exploration and development of petroleum resources                    | Exploration activites                                    | Jubilee Production:  • 27,006,014 barrels with an average daily production of 80,340 and gas production was 38,142MMscf.  TEN Development:  • Total of 5.32mmbbls with an annualized daily average production of 15, 824bbl/d and gas production of 6,532MMscf                                                                                                                |
|                   | Ensure adequate availability of petroleum products in the Ghanaian market                                                                      | Ensure the safe evacuation of NGLs from Atuabo                                   | Construction of facility                                 | The Ministry facilitated the transfer of the Single Point Mooring (SPM) and Conventional Buoy Mooring (CBM) Facility constructed on a Build Operate and Transfer (BOT) to the Government of Ghana                                                                                                                                                                             |

Source: MoP/MoPet Annual Reports

## PAST ENERGY DEMAND AND SUPPLY

### ☐ Energy demand by sector

• Policy Objective: Provide adequate, reliable and affordable energy to meet the national needs and for export

Grid Electricity supply, share and growth to the Demand Sectors since 2000

| The En   |           |            |       |       |                 | ND SE |      |            |       |             |       |
|----------|-----------|------------|-------|-------|-----------------|-------|------|------------|-------|-------------|-------|
|          | Industry  |            |       | Non   | Non Residential |       |      | esident    | Total |             |       |
| YEAR     |           | %<br>Share | %Gr   |       | %<br>Share      | %Gr   |      | %<br>Share | %Gr   | 1000<br>GWh | %Gr   |
| 2000     |           |            |       |       |                 |       |      |            |       |             |       |
| 2001     |           |            |       |       |                 |       |      |            |       |             |       |
| 2002     | 3.9       | 63.2       | -9.9  | 0.6   | 9.8             | 3.4   | 1.67 | 27.1       | 3.7   | 6.17        | -5.5  |
| 2003     | 2.21      | 48.6       | -43.3 | 0.62  | 13.6            | 3.3   | 1,73 | 38         | 3.6   | 4.55        | -26.3 |
| 2004     | 2.03      | 448        | -8.1  | 0.66  | 14.6            | 6.5   | 1.78 | 39.3       | 2.9   | 4.53        | -0.4  |
| 2005     | 2.54      | 49.2       | 25.1  | 0.7   | 13.6            | 6.1   | 1.92 | 37.2       | 7.5   | 5.16        | 13.9  |
| 2006     | 3.59      | 55.1       | 41.3  | 0.79  | 12.1            | 12.9  | 2.13 | 32.7       | 10.9  | 6.51        | 26.2  |
| 2007     | 2.7       | 48.3       | -25   | 0. 80 | 14.3            | 1.3   | 2.1  | 37.6       | -1.4  | 5.59        | -14.1 |
| 2008     | 2.97      | 48.2       | 10    | 0.93  | 15.1            | 16.3  | 2.27 | 36.9       | 8.1   | 6.16        | 10.2  |
| 2009     | 2.94      | 47.2       | -1    | 0.88  | 14.1            | -5.4  | 2.41 | 38.7       | 6.2   | 6,23        | 1.1   |
| 2010     | 3.16      | 46.1       | 7.5   | 0.97  | 14.1            | 10.2  | 2.74 | 39.9       | 13.7  | 6.86        | 10.1  |
| 2011     | 3.9       | 48.9       | 23.4  | 1.31  | 16.4            | 36.1  | 2.76 | 34.6       | 0.7   | 7.98        | 16.3  |
| 2012     | 4.15      | 51.2       | 7.7   | 1.15  | 14.2            | -0.8  | 2.8  | 34.6       | -5.8  | 8.24        | 1.5   |
| 2013     | 4.22      | 47.1       | 1.7   | 1.53  | 17              | 32.3  | 3.23 | 36         | 15.2  | 9           | 10.7  |
| Note: Gr | is growtl | n rate     |       |       |                 |       |      |            |       |             |       |

Source: Energy Commission, 2014 Energy (Supply and Demand) Outlook for Ghana

# PAST ENERGY DEMAND AND SUPPLY CONT'D

### **□** Demand and Supply by energy

#### • Supply Side

|             | Total Primary Energy Supply (ktoe) |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------|------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Year        | 2000                               | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| Oil         | 1812                               | 2022 | 2270 | 2306 | 2225 | 2140 | 2815 | 3017 | 2672 | 2316 | 2744 | 2820 | 3870 | 4011 |
| Natural Gas | N.A                                | N.A  | N.A  | N.A  | N.A  | N.A  | N.A  | N.A  | N.A  | 5    | 394  | 769  | 390  | 292  |
| Hydro       | 609                                | 582  | 479  | 363  | 472  | 499  | 472  | 337  | 510  | 544  | 522  | 598  | 648  | 700  |
| Wood        | 3888                               | 3703 | 3539 | 3395 | 3273 | 3174 | 3100 | 3068 | 3068 | 3124 | 3206 | 3370 | 3408 | 3553 |
| Total       | 6309                               | 6307 | 6288 | 6063 | 5971 | 5814 | 6387 | 6250 | 6250 | 5989 | 6865 | 7557 | 8316 | 8556 |

Source: Energy Commission, 2014 Energy (Supply and Demand) Outlook for Ghana

#### Demand Side

|             | Total Final Energy Consumed (ktoe) |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-------------|------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Year        | 2000                               | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    |
| Electricity | 596.8                              | 614.7   | 587.2   | 450.7   | 455.7   | 512.8   | 633.0   | 553.8   | 620.8   | 640.8   | 715.2   | 789.9   | 796.0   | 910.0   |
| Petroleum   | 1,535.3                            | 1,537.0 | 1,633.6 | 1,573.5 | 1,800.0 | 1,817.6 | 1,817.6 | 2,126.6 | 2,071.3 | 2,597.7 | 2,491.1 | 2,826.6 | 3,303.1 | 3,300.1 |
| Biomass     | 3,432.4                            | 3,237.8 | 3,081.8 | 2,924.7 | 2,839.0 | 2,745.2 | 2,671.3 | 2,593.7 | 2,517.8 | 2,493.3 | 2,463.9 | 2,575.6 | 2,588.8 | 2,676.0 |
| Total       | 5,564.5                            | 5,389.4 | 5,302.6 | 4,948.9 | 5,094.6 | 5,075.7 | 5,176.9 | 5,274.1 | 5,209.8 | 5,731.7 | 5,670.2 | 6,192.1 | 6,687.9 | 6,886.0 |

Source: Energy Commission, 2014 Energy (Supply and Demand) Outlook for Ghana

# PAST ENERGY DEMAND AND SUPPLY CONT'D

### **□** Demand and Supply by Energy

#### Power

|        | Peak Load (MW) |       |       |       |       |       |       |       |       |       |  |
|--------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Year   | 2006           | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  |  |
| System |                |       |       |       |       |       |       |       |       |       |  |
| Peak   | 1,393          | 1,274 | 1,367 | 1,423 | 1,506 | 1,665 | 1,729 | 1,943 | 1,970 | 1,933 |  |

Source: Energy Commission, National Energy Statistics 2016

|      |            | Ele    | ectricity Supply    | y (GWh) |                        |
|------|------------|--------|---------------------|---------|------------------------|
| Year | Generation | Import | <b>Total Supply</b> | Export  | <b>Supply to Ghana</b> |
| 2006 | 8,430      | 629    | 9,059               | 754     | 8,305                  |
| 2007 | 6,978      | 435    | 7,413               | 246     | 7,167                  |
| 2008 | 8,324      | 275    | 8,599               | 538     | 8,061                  |
| 2009 | 8,958      | 198    | 9,156               | 752     | 8,404                  |
| 2010 | 10,169     | 106    | 10,275              | 1,030   | 9,245                  |
| 2011 | 11,200     | 81     | 11,281              | 691     | 10,590                 |
| 2012 | 12,024     | 128    | 12,152              | 667     | 11,485                 |
| 2013 | 12,870     | 27     | 12,897              | 530     | 12,367                 |
| 2014 | 12,963     | 51     | 13,014              | 522     | 12,492                 |
| 2015 | 11,492     | 223    | 11,715              | 552     | 11,163                 |
| 2016 | 12,942     | 574    | 13,516              | 274     | 13242                  |

#### Petroleum

|          | Petroleum Products Supplied to the Economy (kilotonnes) |         |         |         |         |         |         |         |         |         |  |  |
|----------|---------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Year     | 2006                                                    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    |  |  |
| LPG      | 88.0                                                    | 93.3    | 117.6   | 220.6   | 178.4   | 214.4   | 268.5   | 251.8   | 241.5   | 279.0   |  |  |
| Gasoline | 511.9                                                   | 544.2   | 545.0   | 701.4   | 737.8   | 807.0   | 992.7   | 1,080.6 | 1,102.3 | 1,163.2 |  |  |
| Premix   | 33.7                                                    | 41.0    | 50.7    | 55.1    | 32.4    | 45.6    | 58.9    | 53.4    | 56.2    | 47.2    |  |  |
| Kerosene | 76.5                                                    | 63.3    | 34.6    | 89.3    | 49.3    | 62.4    | 45.6    | 27.8    | 9.3     | 6.9     |  |  |
| ATK      | 114.7                                                   | 122.8   | 119.2   | 124.7   | 108.4   | 135.3   | 141.3   | 131.9   | 113.9   | 112.0   |  |  |
| Gas Oil  | 934.0                                                   | 1,147.0 | 1,092.1 | 1,280.0 | 1,271.9 | 1,431.2 | 1,665.0 | 1,722.6 | 1,713.0 | 1,902.7 |  |  |
| RFO      | 56.8                                                    | 51.3    | 47.9    | 40.3    | 30.9    | 37.5    | 33.5    | 39.3    | 26.8    | 13.4    |  |  |
| Total    | 1,815.6                                                 | 2,062.9 | 2,007.1 | 2,511.4 | 2,409.1 | 2,733.4 | 3,205.5 | 3,307.4 | 3,263.1 | 3,524.4 |  |  |

Source: Energy Commission, National Energy Statistics 2016

Source: Energy Commission, Strategic National Energy Report

# **ENERGY PRICES**

## □ Policy Objective: Achieve economically efficient tariffs by 2016

## • Electricity Pricing

|                 | FIRST SCHEDU               | ILE                         |
|-----------------|----------------------------|-----------------------------|
| Т               | ariff Category             | Effective 1st January, 2017 |
| BGC VRA         | - GHp/kWh                  | 21.08                       |
| Composite BGC ( | VRA and IPPs) - GHp/kWh    | 35.97                       |
|                 |                            |                             |
|                 | SECOND SCHED               | ULE                         |
|                 | Tariff Category            | Effective 1st January, 2017 |
| TSC             | -GHp/kWh                   | 5.59                        |
| ASC             | -GHp/kWh                   | 3.15                        |
|                 | THIRD SCHEDU               | <br>Jle                     |
|                 | Tariff Category            | Effective 1st January, 2017 |
| DSC             | -GHp/kWh                   | 22.22                       |
| DWC             | -GHp/kWh                   | 32.74                       |
| Source: Public  | Utility Regulatory Commiss | sion 2017                   |

|                          | FOUR                  | RTH SCHEDULE                |  |
|--------------------------|-----------------------|-----------------------------|--|
| EUT Tariff Category      |                       | Effective 1st January, 2017 |  |
| Residential              |                       |                             |  |
| 0-50 (Exclusive)         | GHp/kWh               | 33.56                       |  |
| 51-300                   | -GHp/kWh              | 67.33                       |  |
| 301-600                  | -GHp/kWh              | 87.38                       |  |
| 601+                     | -GHp/kWh              | 97.09                       |  |
| Service Charge           | -GHp/month            | 633.17                      |  |
| Non-Residential          |                       |                             |  |
| 0-300                    | -GHp/kWh              | 96.79                       |  |
| 301-600                  | -GHp/kWh              | 102.99                      |  |
| 601+                     | -GHp/kWh              | 162.51                      |  |
| Service Charge           | -GHp/month            | 1055.29                     |  |
| Tariff Category          |                       | Effective 1st January, 2017 |  |
| SLT-LV                   |                       |                             |  |
| Max. Demand              | -GHp/kVA/month        | 5909.60                     |  |
| Energy Charge            | -GHp/kWh              | 100.89                      |  |
| Service Charge           | -GHp/month            | 4221.15                     |  |
| SLT-MV                   |                       |                             |  |
| Max. Demand              | -GHp/kVA/month        | 5065.37                     |  |
| Energy Charge            | -GHp/kWh              | 78.09                       |  |
| Service Charge           | -GHp/month            | 5909.60                     |  |
| SLT-HV                   |                       |                             |  |
| Max. Demand              | -GHp/kVA/month        | 5065.37                     |  |
| Energy Charge            | -GHp/kWh              | 71.76                       |  |
| Service Charge           | -GHp/month            | 5909.60                     |  |
| SLT-HV MINES             |                       |                             |  |
| Max. Demand              | -GHp/kVA/month        | 5909.60                     |  |
| Energy Charge            | -GHp/kWh              | 113.97                      |  |
| Service Charge           | -GHp/month            | 5909.60                     |  |
| Source: Public Utility I | Regulatory Commission | 2017                        |  |

## **ENERGY PRICES CONT'D**

□ Policy Objective: Ensure transparency in the management of petroleum resources

#### • Petroleum Pricing

#### **OMCs and LPGMCs Ex-Pump Prices**

#### INDICATIVE EX-PUMP PRICES\* (1st - 15th JUNE, 2017) No. DIESEL **PETROL** LPG KEROSENE MGO Local UNIFIED **COMPANY** (GHp/Kg) (GHp/Lt) (GHp/Lt) (GHp/Lt) (GHp/Lt) (GHp/Lt) 1 AI ENERGY 367.00 351.00 246.00 2 ALLIED 413.00 407.00 ALIVE GAS 437.13 ANDEV 435.98 AP OIL & GAS 397.25 399.55 421.68 283.13 BEAP ENERGY 432.17 426.31 BENAB OIL 425.80 419.97 418.83 **BG PETROLEUM** 424.11 417.47 459.51 342.18 320.36 372.76 BISVEL 403.73 406.03 10 CENTRAL BRENT 403.19 COEGAN 444.24 11 COMPASS OLEUM 12 399.00 399.00 13 DUKES 432.22 426.42 14 ENGEN 412.05 409.75 430.15 342.52 315.52 15 **EXCEL** 397.15 393.70

#### **BDCs Ex-Refinery Prices**

|         | IND               | CATIVE EX-  | REFINERY PE  | RICES* (1 | st - 15th JUI | NE, 2017) |          |
|---------|-------------------|-------------|--------------|-----------|---------------|-----------|----------|
| No.     | BDC/REFINERY      |             |              |           |               |           |          |
|         |                   | PETROL      | DIESEL       | LPG       | KEROSENE      | MGO LOCAL | UNIFIED  |
|         |                   | (GHp/Lt)    | (GHp/Lt)     | (GHp/Kg)  | (GHp/Lt)      | (GHp/Lt)  | (GHp/Lt) |
| 1       | BLUE OCEAN        | 219.98      | 216.91       | -         | 220.58        | 216.91    | -        |
| 2       | CHASE             | 216.80      | 213.16       | -         | 217.85        | 213.16    | -        |
| 3       | CIRRUS            | 222.84      | 220.11       | -         | -             | -         | -        |
| 4       | EAGLE             | 203.10      | 199.21       | -         | -             | 200.71    | -        |
| 5       | EBONY             | 209.46      | 205.71       | -         | 210.36        | 205.71    | -        |
| 6       | ECO               | 209.39      | 208.06       | -         | -             | -         | -        |
| 7       | FIRM ENERGY       | 227.32      | 224.14       | 270.86    | -             | 208.06    | -        |
| 8       | GLOBEX ENERGY     | 216.62      | 209.76       | -         | -             | -         | -        |
| 9       | GO ENERGY         | 202.09      | 199.76       | -         | -             | 199.76    | -        |
| 10      | HASK              | -           | 202.84       | -         | -             | -         | -        |
| 11      | JUWEL             | -           | -            | -         | -             | -         | -        |
| 12      | MOBILE OIL        | 187.00      | 187.00       | -         | -             | -         | -        |
| 13      | MISYL             | 210.21      | 207.27       | -         | -             | -         | -        |
| 14      | OIL CHANNEL       | 215.09      | 212.09       | -         | -             | -         | -        |
| 15      | OIL TRADE         | 217.54      | 214.50       | -         | -             | -         | -        |
| 16      | PLATON            | -           | 218.26       | -         | -             | -         | 220.93   |
| 17      | PWSL              | 213.50      | 209.92       | 281.91    | 205.04        | 209.92    | -        |
| 18      | RAMA              | 217.54      | 214.50       | -         | -             | -         | -        |
| 19      | VIHAMA            | 219.98      | 216.91       | -         | -             | 216.91    | -        |
| 20      | LHS ENERGY        | 210.42      | 206.64       | -         | -             | 206.64    | -        |
| *Prices | are indicative ar | nd may chan | ge within th | e sales w | indow.        |           |          |

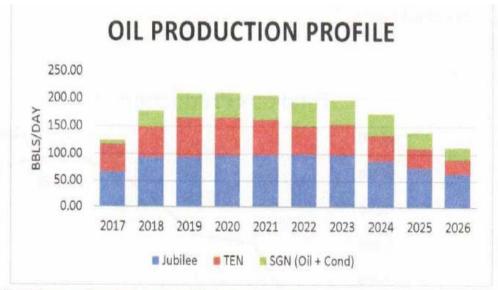
**Source: National Petroleum Authority** 

<sup>\*</sup>Prices are indicative and may change at the pump.

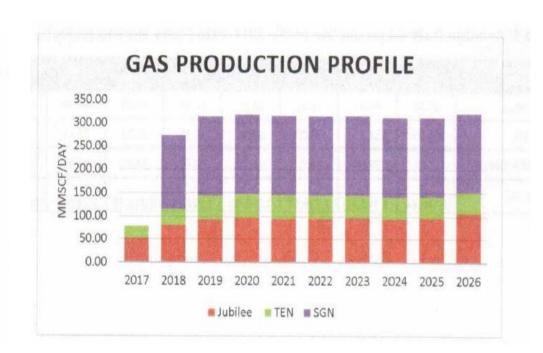
# **OUTLOOK OF ENERGY DEMAND AND SUPPLY**

□ Policy Objective: Provide adequate, reliable and affordable energy to meet the national needs and for export (Power)

Capacity Demand and Supply (Power)




## OUTLOOK OF ENERGY DEMAND AND SUPPLY CONT'D


□ Policy Objective: Ensure accelerated and integrated development of the oil and gas industry

Petroleum Forecast

#### Average daily oil production







Source: Ghana National Petroleum Corporation, Ghana's Upstream Oil and Gas Industry, March 2017

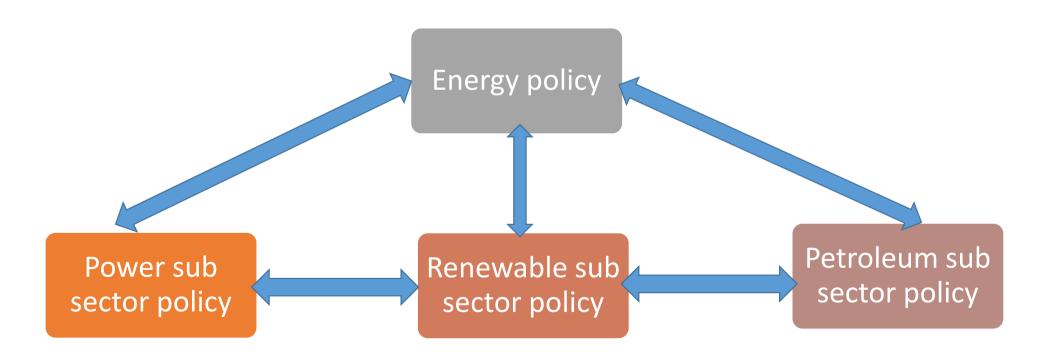
# ENERGY-RELATED INVESTMENT FOR DOMESTIC AND OVERSEAS

| l.                                                                 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                    | Generation                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1 Pwalugu Hydro Development                                        | To increase hydro generation capacity by 50MW and to enhance energy supply                                                                                                                                                            | To be determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                    | security, to accelerate rural electrification and to promote agricultural activities                                                                                                                                                  | after feasibility study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                    | through irrigation.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 2 Kpone Thermal Power Plant Expansion                              | To conduct a detailed feasibility studies for the expansion of KTPP into a 780MW                                                                                                                                                      | EURO 1,180,482.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                    | power enclave.                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Transmission                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Project                                                            | Facilitate the evacuation of power from the Kpone Thermal Power Project.                                                                                                                                                              | USD 25M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 4 Takoradi- Tarkwa Transmission Line Upgrade                       | To avert the overloading of the Takoradi-Tarkwa line when there is outage on the                                                                                                                                                      | USD 20M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                    | Aboadze-Prestea line.                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Network Protection System Improvement Project Phase (2) (NPSIP II) | Improve distribution system reliability and safety                                                                                                                                                                                    | USD 2,366,994 GHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                    |                                                                                                                                                                                                                                       | 128,871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| NED Supply Improvement Rehabilitation Project Phase                | Improve system reliability                                                                                                                                                                                                            | USD 2,500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Renewable                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| gramme                                                             | To reduce the daily national peak load by 200 MW through self-generation using solar photovoltaic (PV) technology                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ation Projects:                                                    | Harnessing the associated gas from the Jubilee Field to supply cheap gas for power generation, industrial application and for domestic uses.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| vest into ancillary projects such as                               |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| nd other secondary use of the                                      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| oration And Development:                                           | To promote the sedimentary basin under a favorable fiscal and regulatory                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Bidding for exploration blocks                                     | regime, transparent and flexible licensing policy to attract competent investors into exploring its sedimentary basins.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                    | Project  Transmission Line Upgrade  tion System Improvement Project  I)  Dovement Rehabilitation Project Phase  gramme  ation Projects:  vest into ancillary projects such as nd other secondary use of the loration And Development: | through irrigation.  To conduct a detailed feasibility studies for the expansion of KTPP into a 780MW power enclave.  Project  Facilitate the evacuation of power from the Kpone Thermal Power Project.  To avert the overloading of the Takoradi-Tarkwa line when there is outage on the Aboadze-Prestea line.  Improve distribution system reliability and safety  Improve distribution system reliability  powement Rehabilitation Project Phase  To reduce the daily national peak load by 200 MW through self-generation using solar photovoltaic (PV) technology  ation Projects:  west into ancillary projects such as nd other secondary use of the  Improve distribution system reliability  To reduce the daily national peak load by 200 MW through self-generation using solar photovoltaic (PV) technology  To promote the associated gas from the Jubilee Field to supply cheap gas for power generation, industrial application and for domestic uses.  To promote the sedimentary basin under a favorable fiscal and regulatory regime, transparent and flexible licensing policy to attract competent investors |  |

## CHALLENGES IN FORMULATING ENERGY POLICIES

- Merging and adapting to existing policy framework
- Partnership coordination and knowledge management
- Identifying the real challenges of the Sector
- Ownership and management of the Value/supply chain infrastructure
- Budget constraints to formulate pertinent policies for the Sector

# AREAS OF INTEREST


Energy policy in Renewable Energy  Renewable energy & Energy Efficiency Policy to reduce cost of electricity

Energy policy in Coal Development of Coal fired plants

Energy forecasting and demand  Calculation of demand and supply projections and its implementations

# CONCLUSION

**Ministry of Energy Mission:** Develop and sustain an efficient and financially viable Energy Sector that provides secure, safe and reliable supply of energy to meet Ghana's developmental needs in a competitive manner







# THANK YOU