

Energy markets in transition with a focus on LNG: Growing pains, new technologies and new trading arrangements

Peter R Hartley

IAEE Distinguished Lecturer, 2016

George & Cynthia Mitchell Professor of Economics and Rice Scholar in Energy Studies, James A. Baker III Institute for Public Policy, Rice University

> BHP Billiton Chair in Energy and Resource Economics University of Western Australia

Outline of Talk

- * Economic growth and energy demand
- Technological change and fossil fuels
- Alternative energy technologies
- Modeling the transition process
- * The future role of natural gas
- * LNG market developments
- * The value of long-term LNG contracts
- * Indexing in long-term LNG contracts

IEEJ: May 2016 © IEEJ2016

TOPIC 1

Economic growth and energy demand

Economic growth and overall energy demand

- * Access to modern energy is essential for economic growth
 - * Access to non-human/non-animal energy sources was an essential ingredient in the industrial revolution
- * Fossil fuels are relatively dense energy sources:
 - * Gasoline 46.9GJ/t by weight, 34.6 MJ/L by volume; Diesel 45.8 GJ/t, 37.3 MJ/L
 - * Filling a car, flow rate is ~ 40L/minute = 83 GJ/hour = 23 MW power plant output
 - Power of average human worker is about 75W, so 2000 hours of work per year delivers 150 kWh = 540 MJ = energy in about 15 L of diesel

2011 TPE/capita versus GDP/capita

Source: Gapminder

TPE demand growth

Source: EIA

Higher growth tends to more unstable

Source: EIA

Growth and the pattern of energy use

- * Economies tend to undergo a predictable pattern of energy use as they develop:
 - * First, industrial and construction sector use grow most rapidly, especially via construction of infrastructure, which is very energy and material intensive
 - * But industrial use eventually declines in *per capita* terms as economy matures
 - * Commercial and residential energy use increase next
 - * Rapid increase in energy use for transportation occurs later, and does not attain the growth rates of industrial or commercial, but...
 - * Transportation eventually becomes the largest component of final energy demand
- * The share of primary energy used to generate electricity grows over time
- * Environmental concerns increase as people get wealthier, favouring natural gas especially at the expense of coal

Future sources of energy demand growth?

- * Extraordinary feature of the recent episode: High growth combined with high population
 - * Rapid Chinese growth stressed not only energy but also other commodity markets
- Sources of rapid economic growth:
 - * Movement of labour from agriculture to industry
 - Investment in physical and human capital
 - Adoption of technologies from more developed economies
- * Eventually countries converge to the long run growth path of the leading nations
 - Very high growth rates get more difficult to achieve as a straight numerical issue
 - * Countries at the frontier can no longer take new technologies "off the shelf"
 - * In particular, Chinese growth is unlikely to return to its previous highs
- * Might India or SE Asia, which also have high populations move into the high growth phase?

Energy supply also affects growth

- * In addition to economic growth affecting energy demand, energy availability, or especially lack thereof, can affect economic growth
- * Many major post-WWII recessions have been associated with a preceding, and apparently precipitating, constraint on energy supply
- * Major reasons for macroeconomic impacts of energy supply constraints:
 - * Energy is an essential input
 - * More expenditures on energy imply less available for consumption or investment
 - * Energy/capital input ratios are relatively fixed in the short run
 - * Reducing hours of operation is the main short-run response to high energy prices
 - * If price changes are perceived as permanent, capital can be replaced with a more energy efficient alternative, but this is also disruptive in the macroeconomic sense
 - * Other attempts to economize on energy use also come at some economic cost

IEEJ: May 2016 © IEEJ2016

TOPIC 2

Technological change and fossil fuels

Technological change and fossil fuels

- Despite repeated fears of exhaustion, technological change has continually uncovered new resources, reduced the cost of extracting "difficult" resources, and increased EUR from previously exploited sources
 - * While total fossil fuel resources are finite, the known resource base is vast
 - * Even the amount that could be recovered with current and reasonably foreseeable technologies is more than 2000 times current annual production
 - We will never "run out" of fossil fuels rather at some point the remaining resources will cost more to extract than the cost of alternative energy sources
- * The production of natural gas, and then light oil, from shale is just the latest "revolution" in fossil fuel technology

Technology Progression

Source: Mike Vincent, "Five things you didn't want to know about hydraulic fractures"

Increased energy efficiency

- * Increased end-use energy efficiency also extends fossil fuel resources
 - * By allowing the same energy services to be produced with less primary energy input, fossil fuel resources are exploited more slowly
 - * Costs of production then will not rise as fast
 - * This is a version of the "green paradox"
 - * Technologies increasing substitution between different fuels also extends resource life
- * Other innovations most especially the production and long-distance transmission of electricity have increased the *value* of energy services
- * Economic growth beyond middle income levels also tends to reduce the energy intensity of GDP
 - This is simply the result of the changing composition of GDP toward sectors especially services – that are less energy intensive
 - * This, as more countries become high income, economic growth can continue without requiring the same increases in energy input

IEEJ: May 2016 © IEEJ2016

TOPIC 3

Alternative energy technologies

Non-fossil fuel energy technologies

- * Fossil fuels currently supply more than 90% of the world's primary energy
- Nuclear power and hydroelectricity supply more than 8%
- * Other modern non-fossil energy sources are used mainly as a result of subsidies
 - Example: The DSIRE database currently lists 28 US Federal policies and 2,613 policies at the state and local level (including Washington DC) promoting renewable energy and energy efficiency technologies
- * While these other sources are called "renewable" in practice they also are limited in supply
 - * The energy source (basically sunlight) that is converted to energy services by sources such as wind, solar or hydroelectricity is essentially unlimited
 - * However, suitable sites for constructing harvesting infrastructure are limited in supply

Renewables – cost disadvantages

- * Relative to combined cycle gas turbines, the per kW of capacity capital cost of
 - * onshore wind is about 2x
 - * offshore wind is about 4x
 - ✤ solar is about 5.5x
- * Low average capacity utilization for renewables further raises costs per kWh
- * Renewables also often need transmission upgrades
 - * These also are used at a low capacity factor

Example generating plant cost calculations (r = 0.075)

	Gas turbine	NGCC	Coal	Nuclear	Onshore wind	Pumped storage
Capital cost per MW (\$m/MW)	0.676	1.023	2.934	5.53	2.213	5.288
Fixed O&M (\$m/MW)	0.00704	0.01537	0.03118	0.09328	0.03955	0.01800
Variable O&M (\$/MWh)	10.37	3.27	4.47	2.14	0	0
Fuel (\$/MWh)	46.31	30.54	19.36	2.88	0	0
Heat rate (MMBTU/MWh)	9.75	6.43	8.80	10.452	0	0
Fuel price (\$/MMBTU)	4.75	4.75	2.20	0.28	0	0
Load factor	0.1	0.7	0.8	0.9	0.3	0.1
Plant life	30	30	50	50	25	50
Levelised cost (¢/kWh)	13.01	5.04	6.05	7.09	9.06	48.58

Renewables – other issues

- * Wind power output fluctuates frequently and substantially
 - * For wind speeds 10–30 km/h, output varies as the cube of wind speed (next slides)
 - * Ancillary services are needed to maintain network stability
 - * Added thermal plants then are not used when the wind blows
 - * Also peaking gas turbines are less efficient and more costly than NGCC plants
 - * Curtailing base load thermal plants reduces their efficiency and can raise pollution
- * In many locations, wind also is strongest off-peak, weakest in peak hours
 - * A large fraction of wind capacity increases the chance of inadequate capacity at peaks
- * Best sites for wind and solar are often remote from major consuming locations
 - * Expensive new transmission lines with low capacity factors are needed
- * Wherever wind has been forced into the network via subsidies and mandates we have seen substantial rises in prices and deterioration in supply quality
- * Wind and solar farms also have a large land and environmental impacts

Example Turbine Power Curve (225 kW rating)

Wind production SE Australia 14/10/15

Wind production SE Australia 15/10/15

- Claimed paucity of funding for commercializing new technologies relative to funds for basic R&D
- Discussions typically focus on remedial policies
- * Why are apparently profitable opportunities ignored?

Previous explanations for the valley

- Informal justifications include:
 - * Information spillovers that make it hard to capture benefits of R&D
 - * Information asymmetries, uncertainty about viability, and financial and product market volatility that make it hard to "sell" the project to investors
 - * Higher costs of early plants make initial prototypes unprofitable even if the technology would be viable in the long run (an "infant industry" argument)
 - * Inability to use many assets (especially intellectual property, patents) as collateral
- * But one would think that most of these problems would be more severe at the "discovery" phase than at the "new product development" stage
- A 2009 paper argues that a "non-economic" motivation (public subsidies) for R&D at stage 1 alone can lead to more stage 1 than later stage projects
 - * Actually, more subsidies for stage 1 research could be efficient if more basic research has more extensive spillovers that are hard to monetize
- * Another issue: why energy but not pharmaceuticals or IT, for example?

IEEJ: May 2016 © IEEJ2016

TOPIC 4

Modeling the transition process

A model of the transition process

- * In a recent paper, we use a dynamic intertemporal model to calculate an efficient transition between energy sources
- * The model distinguishes several types of investment:
 - * R&D into *both* fossil fuel and non-fossil energy technologies
 - * Capital is used to produce final output, with energy services as another *essential* input
 - * Energy services are produced using two types of non-substitutable capital
- * We assume learning by doing and explicit R&D are both needed to reduce the cost of new non-fossil energy production
 - * Such a "two factor" learning model has been estimated for progress in solar and wind and other energy technologies
- * Technological progress in fossil fuel technology makes it harder for non-fossil alternatives to compete

The valley of death in this model

- * The early stage of development largely involves cost reductions through R&D expenditure and learning
- * The "commercialization" phase involves building physical capital to supply energy services using the new technology
- * Capital used to produce energy services from fossil fuels is a sunk cost, so it will be used so long as the energy price covers *short-run operating* costs
- * Until fossil fuels are abandoned the energy price is less than even the operating costs of the alternative energy technology
- Investment into R&D and development of new technologies starts long before the technologies are deployed commercially
- Furthermore, the new technologies will be used to supply energy services before the energy price is sufficient to cover their long run costs
 - * The full long-run costs are not covered until some time after fossil fuels are abandoned
- * Big difference between energy and IT or pharmaceuticals: only energy requires large investments in infrastructure to deliver final product after the R&D phase

An "optimal energy crisis"

- * The transition path between technologies that we calculate is efficient
- That path involves an "energy crisis" slower economic growth and especially reduced consumption and a lower standard of living – around the time *T* of transition between fossil and non-fossil energy sources
 - * As the cost of fossil fuel production begins to rise, it becomes optimal to invest more in fossil fuel R&D (including new field development) to keep costs under control
 - * Also as T approaches, substantial investment in infrastructure to supply energy services from non-fossil sources is required
 - * It also becomes more worthwhile to accelerate R&D investment into alternative energy technologies as *T* approaches
 - * Investment into fossil fuel energy supply infrastructure ceases before fossil fuels are abandoned at *T*, but this limits the supply of energy services and hence final output
 - * The cost of energy services has to rise dramatically to cover the full long-run cost of alternative energy supply infrastructure and incentivize the investment required
 - * Spending on energy and investments, and constrained output, reduce consumption

Real price of energy

years

Output growth rate

Consumption/output ratio

IEEJ: May 2016 © IEEJ2016

TOPIC 5

The future role of natural gas

A "golden age of gas"?

- * Barring a breakthrough in alternative energy technology, fossil fuels are likely to dominate energy production for many more decades
- * However, many expect natural gas to grow faster than coal or oil
- * Natural gas has much lower emissions than other fossil fuels especially coal
 - * Controlling "conventional" pollutants from coal is already raising costs
 - * CCS and gasification as strategies to keep coal competitive?
- * The resource base for natural gas is huge especially if one includes hydrates
- * Even if renewables subsidies continue, wind and solar generation tend to require more natural gas as backup
 - * Time of day pricing to smooth the load curve is a possible alternative approach

Natural gas in transportation?

- For transportation, gasoline and diesel have higher energy density than CNG and are easier to handle than LNG
- Nevertheless, LNG may be used more widely in truck fleets, rail, and especially shipping, in part because of the relative environmental benefits
- Natural gas is already indirectly used in transportation via oil sands and ethanol production, and in the form of electricity
- * Electric cars also have some advantages over internal combustion engines
 - Advantages in braking and idling
 - * Generating plants are more energy efficient that internal combustion engines
 - * But batteries currently have low energy density
 - * Vehicle choice versus driving choices in multi-vehicle households

IEEJ: May 2016 © IEEJ2016

TOPIC 6

LNG market developments

Increasing spot and short-term LNG trades

Source: GIIGNL

Increasing numbers of LNG traders

Source: GIIGNL

Spot trading is related to the number of importers

Source: GIIGNL

SpotFrac =
$$0.187 \ln(Regas) - 0.590$$
; $R^2 = 0.9370$

Average LNG shipping distance

Sources: Author calculations based on GIIGNL and VesselDistance.com

Recent evolution of spot natural gas prices

Source: Platts

US LNG Imports/Marketed production

Source: US Energy Information Administration (EIA)

Japanese LNG imports: Long-term contract and other

Other recent developments

- * LNG swaps and other spot trades increasingly exploit arbitrage opportunities
- * Many regasification terminals are adding storage capacity to support arbitrage
- * Expiration of long-term contracts for some early liquefaction developments has created spare capacity and without a need to finance large investments
 - More of their output is being sold short-term and spot
- Many recent contracts have greater volume flexibility, destination flexibility, and less than 100% off-take commitments by buyers
- * After the EU restructuring directive of 1998 (promoting competition in EU gas markets), the Commission found destination clauses anti-competitive in 2001
 - * This stimulated re-export of cargoes and increased destination flexibility
- * Growth of "branded LNG" sourced from many sellers and sold to many buyers

Effects of US developments on LNG trade

- * The first few US terminals are proposing exports under a tolling arrangement
 - * Typical feed gas price 115% of Henry Hub and liquefaction fee \$3–3.50/mmbtu
 - * Several buyers will add the LNG to their global portfolio
- * Some proposed facilities are smaller and more modular than traditional trains
 - * For example, Elba Island (which also has output assigned to Shell's global portfolio)
 - LNG Ltd Lake Charles terminal using a more energy efficient less capital intensive process
- * Future co-location of regasification and liquefaction facilities in the US with pipeline connections to a deep market will facilitate short-term arbitrage

Summary comments on recent developments

- * More elastic natural gas supply and demand curves will reduce price volatility
- * Intermediaries providing hub services and having access to storage will allow more effective price arbitrage, further reducing price variability
- * The gap between spot prices available to importers and exporters also will decline as market liquidity rises
- * Spot market trades from parties to contracts should continue to increase
- * Greater use of spot and short-term trading may favor lower capital cost projects
- * Growth in spot trading may reduce volumes under contract and raise spot market participation, further raising spot market liquidity
- * Long-term contracts will also become more flexible to allow parties to better exploit the optionality of spot and short-term trades
- There are compelling reasons for retaining oil prices as the main indexing variable for long-term contracts, but limited use of gas price indexes from deep natural gas markets might provide some risk diversification benefits

IEEJ: May 2016 © IEEJ2016

TOPIC₇

The value of long-term LNG contracts in an uncertain environment

Explanations for long-term contracts

- * We focus on two main explanations for the desirability of long-term contracts:
 - 1. The hold-up problem
 - 2. Securing a lower cost of finance by reducing cash flow variability
- * Commercial parties emphasize the risk sharing benefits of contracts, but the academic literature has focused on the hold-up problem
- * The academic literature has also focused on the efficiency benefits of take-or-pay clauses in long-term contracts

The hold-up problem

- * This can occur when trading partners make large up-front investments dedicated to the trade partnership
- Once investments have been made, the counter-party has an incentive to bargain for prices that cover operating costs but do not yield a competitive return on the capital
 - * This can also apply to re-negotiating an indexation formula
- * The problem can become more acute if some information is known only to one party, so the rents associated with the relationship are not public knowledge
- * Contracts often allow more quantity adjustments than price adjustments
 - * Price adjustments are zero-sum, while quantity adjustments leave the other party with alternative avenues for making up lost profits

Rent in the contracting relationship

- Parties in a long-term contract tend to be better matched to each other than to outside parties
- * The next best price for the buyer p_M and the next best price available to the seller p_X will vary randomly
- While the two contracting parties generally are better off trading with each other that may not always be true
- * The contract price will tend to be toward the top of the p_X distribution and the bottom of the p_M distribution

Take or pay clauses

Contract price *p*

Best spot price for buyer p_M —

Best spot price for seller p_X –

- * In the situation illustrated, the importer would prefer to buy spot rather than honour the contract
- * But it would be efficient to buy from the exporter since they would both be better off trading at a price between p_X and p_M than both using the spot market
- * A take-or-pay clause requires the importer to make the exporter "whole", that is pay pay $p p_X$ to the exporter, if the contracted volume is not taken
- * Then the buyer would choose to *not* take delivery only when $p_M < p_X$ in which case this is efficient
- * But the take or pay clause also leads to a transfer from the buyer to the seller in situations like the one illustrated

Long-term LNG contracts and project financing

- * Long term contract is "bankable" because it makes cash flows less volatile
- * This in turn allows increased leverage, and reduces the cost of project finance
 - * We assume the net benefits of debt are approximated by corporate tax benefits alone
- * The total amount of debt is limited by a "value at risk" type constraint:
 - * After-tax cash flows to importing and exporting parties are random
 - * The constraint requires an upper bound on the probability that the after-tax cash flow will not be sufficient to service the debt in any given year
- * Key findings:
 - * Contracts can allow trade where it would not otherwise be supportable
 - General increases in spot prices are indexed 85–90%
 - * Contracts are more valuable when there is "rent" in the relationship
 - Parties may limit long term contract volumes to allow more flexibility to exploit profitable spot market trades
 - * Increased spot price variability generally raises the benefits of long-term contracts

IEEJ: May 2016 © IEEJ2016

TOPIC 8

Indexing in long-term LNG contracts

Indexing in long-term contracts

- Energy *relative* prices tend to be much more stationary than the prices of individual energy commodities
 - * For demand, energy content is the dominant determinant of value, although energy density, ease of handling, environmental effects and other attributes are relevant
 - For supply, resources that can be used to produce natural gas in particular can also be used to produce oil and relative output shifts in response to relative prices
- * Many studies have shown that *oil* prices tend to be the *most exogenous* energy price in markets where both prices are free to fluctuate independently
- * Natural gas prices are the most volatile fossil fuel price (next slide)
- * US natural gas prices have looked more attractive recently because the foreign exchange value of the \$US has affected the oil/gas price ratio
 - * After US LNG is traded, US gas prices may be a less attractive index to Asian buyers
- * Other spot natural gas markets need to become sufficiently deep and liquid to reduce risks to investors in these large capital intensive projects
- Indexing to natural gas hub prices may exchange geographical basis differentials for commodity basis differentials

Relative volatilities of Henry Hub and Brent

Source: Author calculations based on data from the US Energy Information Administration (EIA)

Influence of exchange rate on Brent/HH price

 Long-run relationship requires relative heat rates and the foreign exchange value of the \$US to be included to be stable

Within sample fit of dynamic model

Brent relative to Henry Hub

- * Adjustment to long-run error is approximately 6% per month
- * Unexpected inventory changes have about 2x the effect on prices as expected ones
- * HDD and CDD deviations and major hurricanes have expected effects on $\Delta \ln(p_{NG})$

Relationship of JKM to other fuel prices

Data sources: Platts and EIA

The co-integrating (long-run) coefficient β											
	LNG _{t-1}	RFO _{t-1}	coal _{t-1}		Brent _{t-1}		CONST				
Unrestricted											
ec1(t-1)	1	0	0.145	(0.631)	-1.874 (-9. 547)	2.602 (5.709)			
ec2(t-1)	0	1	-0.096	(-1.729)	-0.813 (-17.178)	-0.268 (-2.441)			
Restricted long-run equations											
ec1(t-1)	1	0			-1.806 (-10.991)	2.581	(5.678)			
ec2(t-1)	0	1			-0.857 (-21.64)	-0.254	(-2.319)			
Endogenous	genous The Speed-of-adjustment coefficie		icients α	Further restrictions on		Log					
variable	ec1(t-1)		ec2(t-1)		Long-run	Short-run	Likelihood	Number of			
					coefficient	dynamic		parameters			
					β	coefficients					
A Full Model											
ΔLNG	-0.006	(-5.74)	-0.006	(-1.03)	Ν	Ν	27864.51	160			
ΔRFO	-0.001	(-1.05)	-0.017	(-2.99)							
∆coal	-0.000	(-0.44)	0.003	(0.61)							
∆Brent	0.002	(1.45)	0.014	(2.00)							
B Restric	cted long-ru	n equations									
ΔLNG	-0.006	(-5.71)	-0.006	(-1.09)	Y	Ν	27864.00	158			
ΔRFO	-0.001	(-0.93)	-0.012	(-2.34)							
∆coal	-0.001	(-0.54)	0.000	(0.08)							
ΔBrent	0.002	(1.58)	0.017	(2.63)							
C Restric	cted long-ru	n equations	with spee	d-of-adjustme	ent coefficients	s also restricted					
ΔLNG	-0.006	(-5.84)			Y	N	27862.81	154			
ΔRFO			-0.010	(-2.13)							
∆coal											
ΔBrent	0.003	(2.10)	0.018	(2.83)							
D Fully-1	D Fully-restricted model										
ΔLNG	-0.006	(-6.09)			Y	Y	27833.10	65			
ΔRFO			-0.009	(-2.12)							
∆coal											
ΔBrent	0.003	(2.27)	0.020	(3.19)							

Impulse response functions: Model D

Concluding remarks

- * Energy is of fundamental importance for economic growth
- * The energy industry has experienced tremendous technological change and this has kept fossil fuels as the lowest cost energy source for a long time
- * The transition to alternative energy sources is costly and will take time
 - * Forcing it with subsidies and mandates is imposing substantial welfare costs
 - We should distinguish subsidizing research into new technologies versus subsidies/mandates for the deployment of new technologies that are not yet competitive
- * Natural gas is a favored fuel in the short and intermediate run
- * LNG is growing relative to pipeline gas supplies, but the LNG market is also undergoing rapid change as it makes natural gas more of a globally traded good
- * The capital intensity of LNG projects leaves a role for long-term contracts but spot and short-term trading, and flexibility in contracts, are all increasing
- While there are good reasons for indexing to oil prices, other indexes are possible and have some desirable features