IEEJ: December 2015, All Rights Reserved.

Symposium on Sustainable Power Supply Mix in the Future 20 November 2015 @ Novotel Bangkok On Siam Square, Bangkok, Thailand

ECONOMIC BENEFITS FROM AN INTRODUCTION OF CLEAN COAL TECHNOLOGIES IN EAST ASIA

HAN, Phoumin, Ph.D Energy Economist ERIA (*Economic Research Institute for ASEAN and East Asia*)

V.

OUTLINE OF PRESENTATION

RISING COAL DEMAND IN EAS REGION

CLEAN COAL TECHNOLOGIES

III. ECONOMIC ASSESSMENT OF CTT

IV. ECONOMIC, SOCIAL & ENVIRONMENTAL BENEFITS

CONCLUSIONS & IMPLICATIONS

COAL DEMAND IN EAS

Source: ERIA Energy Outlook

Research Framework in 2014

Macro Assumptions

Economic Growth 4.0 % P.A. from 2012 to 2035

Population Growth

0.6 % P.A. from 2011 to 2035
3.40 billion persons in 2012 to increase to 3.91 billion in 2035

GDP per capita

 4,120 US\$/person (constant 2005 price and US\$) in 2012 increases to 8,800 US\$/person in 2035

Crude Oil Price (nominal price)

Increase to about **200** US\$/bbl in 2035 due to tight balance between demand and supply

Car Ownership

0.09 vehicles/person in 2012, increases to 0.18 vehicles/person using vehicle data of 14 countries

Macro Assumptions

New GDP growth assumption reflect the current government estimated GDP growth. For example, Thailand average GDP growth rate has been used at 3.9~% to be consistent with the NEW PDP 2015

ERIA Source: ERIA ESP WG Report 2015

Energy Outlook Result (BAU)

Final Energy Consumption

Share by Energy in FEC

Gas will mark the highest growth at 4.3% p.a., followed by electricity (3.4%) and oil (2.7%). Consequently gas share will increase from 7% in 2012 to 11% in 2035. Electricity share will also increase from 20% to 25%. On the other hand, coal share will decline from 22% in 2012 to 16% in 2035.

Power Generation

Coal fired generation will still be dominant and its share will be around 60% in 2035.

Source: ERIA ESP WG Report 2015

Rising Coal Demand

Primary Energy Demand in EAS (MTOE)

Source: ERIA Energy Outlook, 2014

 ASEAN, together with China and India, has already shifted both economic growth gravity and energy demand to Asia;

- EAS is projected to grow at a faster pace of 2.5 percent per year on average from 4.910 Mtoo in 2011 to
 - average from 4,910 Mtoe in 2011 to 8,912 Mtoe in 2035;
- Coal will still constitute the largest share of primary demand (above 50%).
- In absolute term, coal consumption will increase by almost double from 2,507 Mtoe in 2011 to 4,155 Mtoe in 2035

Estimate of Coal-Fired Power Plants in EAS

10

Sources: IEA & ERIA, 2013

Origin of Primary Energy Imports

Flow of Coal Exports/imports

Clean Coal Technologies for power generation

Schematic Overview of Typical Power Plant

De-NOx, De-SOx and Electrostatic Precipitator (ESP)

Gas-gas heater (GGH) is equipped to avoid white smoke from the stack by the warming-up of the flue gas exhausted from wet type Desulfurization equipment.

Integrated Gas Combined Cycle (IGCC)

IGCC has been developed to improve the power generation efficiency using gasifier technology to turn coal into synthesis gas (syngas) for gas turbine power generation.

The plant is called integrated because the syngas produced in the gasification section is used as fuel for the gas turbine, and the steam produced by syngas cooler in the gasification section and heat recovery steam is used by steam turbine in combined cycle

ERIA

Higher Thermal Efficiency

- Pulverized Coal-Fired System (PCF): Efficiency upgrade by increasing steam temperature and pressure; A-USC (Advanced USC, 700°C class) is under development
- Integrated Coal Gasification Combined Cycle System (IGCC): Combined Gas turbine (GT) and steam turbine (ST) cycle; Higher thermal efficiency than PCF; Increasing the GT inlet gas temperature is necessary for efficiency upgrade
- Integrated Coal Gasification Fuel Cell Combined Cycle System (IGFC): Triple combined cycle (GT+ST+FC); Higher thermal efficiency than IGCC

Sources: JCOAL, 2014

Note: HHV- Higher Heating Value; LHV; Lower Heating Value

Relationship b/t power plat efficiency & CO2 emission

A REGIONAL TREND- ASEAN & EAS

Even with current USC, efficiency can be raised to over 40%
 With deployment of next-generation technologies like IGCC, power generation efficiency of over 50% can be attained.

19

ERIA

II. ECONOMIC ASSESSMENT OF THE CCT

20

General assumptions for cost-benefit analysis

		Values	Remarks
Plant	Capacity	1,000 MW	
	Operation	25 years	For cash flow purposes
	Operation rate	80%	
	Thermal efficiencies	42.1% (USC), 41.1% (SC), 38.2% (subcritical)	LHV value from NEDO study "Promotion of high- efficiency coal-fired power stations in Indonesia"
	Annual generation	7,008 GWh	
Coal specifications	Heating value	4,000 kcal/kg	
	CO2 emissions	1.43 kg-CO2/kg coal	Based on IPCC 2006 default emission factors for stationary combustion in the energy sector.
			21

Cost Components

- LCOE consists of: base plant costs, desulphurization and denitrification costs, financing & CO₂ emission costs.
- Plant costs are divided into following costs:
 - Engineering, procurement and construction (EPC),
 - o Operation and maintenance (O&M), and
 - o fuel costs.
- Financing costs are calculated to generate 9.5% IRR and 15% IRR. To calculate cash flows over operation, electricity sales are set equal to annual generation at 7,008 GWh for a period of 25 years,
- \geq CO₂ emission costs were calculated at USD 10/ton-CO₂.

LCOE, excluding financing and CO₂ costs

2009 to 1st quarter 2014, coal prices for 4,200 kcal/kg coal ranged from USD 35/ton to USD 63/ton. Thus, price scenarios were chosen at: USD 40/ton (low scenario), USD 50/ton (medium scenario), and USD 60/ton (high scenario)
 Without financing cost, USC is more competitive in every coal price scenario

þ		<u>.</u>								
		Ultra-Supercritical (42.1%)			Supercritical (41.1%)		Subcritical (38.2%)			
		High EPC (USD 2,076 million)	Medium EPC (USD 1,941 million)	Low EPC (USD 1,867 million)	High EPC (USD 2,043 million)	Medium EPC (USD 1,908 million)	Low EPC (USD 1,796 million)	High EPC (USD 1,925 million)	Medium EPC (USD 1,796 million)	Low EPC (USD 1,688 million)
	High (USD 60/ton)	5.39	5.27	5.20	5.46	5.34	5.23	5.68	5.55	5.45
	Medium (USD 50/ton)	4.87	4.74	4.68	4.93	4.80	4.69	5.10	4.97	4.87
	Low (USD 40/ton)	4.35	4.22	4.15	4.39	4.26	4.16	4.52	4.39	4.29

ERIA

Coal prices

IEEJ December 2015, All Rights Reserved

LCOE, with financing and CO₂ costs

If financing costs are set to generate 9.5% IRR, USC is again most competitive, even at USD 40/ton coal price;
 However, as initial capital costs are higher, USC is less competitive when financing costs to generate 15% IRR are considered

24

Generation Cost by Boiler Type & Coal Price

- Financing costs also account for a significant share of total generation costs, depending on IRR.
- USC loses cost-competitiveness when IRR is higher. For example, at coal prices of USD 50/ton, USC is most cost-competitive when IRR is 9% (USDcent 6.77/kWh).
- However, when IRR is increased to 15%, USC is less cost-competitive than SC and subcritical (USDcent 8.27/kWh).
- Therefore, USC may be less viable in countries which do not have access to low-interest loans.

4 4		Boiler Type				
		Ultra Super Critical (USC)	Super Critical (SC)	Sub-critical		
Capacity		1,000 MW				
Coal CV / Price		4,000 Kcal/kg (GAR) / 50 USD/ton				
Thermal Efficiency (LHV)		42.1%	41.1%	38.2%		
Initial Cost (million USD)		1,931	1,897	1,787		
Coal Consumption (tons/year)		3,578,263	3,665,326	3,943,583		
CO2 Emission (tons/year)		5,102,914	5,227,073	5,623,893		
Generation Cost (USD cent/kWh)	IRR= 9.5%	7.29	7.33	7.43		
(@USD60/ton)	IRR=15.0%	8.79	8.80	8.81		
Generation Cost (USD cent/kWh)	IRR=9.5%	6.77	6.79	6.85		
(@USD50/ton)	IRR=15.0%	8.27	8.26	8.24		
Generation Cost (USD cent/kWh)	IRR=9.5%	6.25	6.26	6.27		
(@USD40/ton)	IRR=15.0%	7.75	7.73	7.66		

IV. ECONOMIC, SOCIAL AND ENVIRONMENTAL BENEFITS

26

Potential investment benefits

Employment creation

Potential CO2 reduction by CCT

. Conclusions

CCT is an useful technology to be able to use low ranked \geq coal, which has a plenty reserve in this region; CCT needs large investment; thus lowering upfront cost will make CCTS competitive; About \$US 1,803 billion investment potential from the \geq introduction of CTT & Coal Mines Around haft million job will be created About 13.5 billion tons of CO2 reduction potentials \geq Strengthen environmental standard is key to the up-take of \geq CCT technologies and deployment; Energy efficiency is vitally crucial for policy measures to save energy and use it effectively.

Contact : report@tky.ieej.or.jp

