

Can we allay concerns over nuclear waste & fuel recycling

Professor Paul Howarth Managing Director

What Influences Fuel Cycle Options?

- Balance of number of parameters including:
 - Economics
 - Proliferation
 - Technology readiness
 - Fuel supply
 - Use of nuclear energy
 - Spent fuel storage
 - Disposal
 - Sustainability

- Minimum Naste Generation Minimum Jost **Reactor Systems** Waste Management & Decommissioning **Direct Disposal or Fuel Manufacture** Reprocessing Maximum Safety
- Worldwide growth of nuclear will impact on UK
- Higher levels of nuclear energy closed cycle more favourable

Public Consultation

- Most suitable technical option agreed deep geological disposal
- However UK Government wanted greater public involvement and therefore went back to considering all options
- Committee on Radioactive Waste Management compromised predominantly non-nuclear specialists to consider options
- Very transparent process established and conclusion eventually reached.....deep geological disposal

Geo disposal – Policy challenge not a technical challenge

Geological disposal siting process

• 2008 Site selection process

IEEJ: November 2013 All Right Reserved

- Based on community voluntarism and partnership
 - Invited to participate without commitment
 - Retain a right to withdraw
 - Eligible for engagement package
 - Eligible for a benefits package
 - Subsequently required to take a decision to participate in the process

NATIONAL NUCLEA

LABORATC

Approach to "Volunteerism"

- 3 levels of approval needed
 - Local community (borough)
 - County level
 - National level (policy)

Χ

Significant Campaign of Opposition

Nuclear Waste Consideration

- Putting waste into context:
 - Waste is localised, contained, small in volume and isolated from environment
 - Intergenerational issues CO2 vs nuclear waste
- National
 - Obtaining cross policy support
 - Take geology out of the equation
- Community:
 - Siting benefits to local community need to be made clear
 - Explanation over waste
 - Maintain volunteerism, participation and engagement

Explaining the Containment of Waste

E.g. Finnish disposal canisters made of copper

Simple, Clear Messages to Address Public Values on Nuclear Waste

COVRA, the Dutch high level waste repository, has been transformed into a public art work that is regularly repainted to become lighter and lighter orange to represent the decay of the waste inside. After 100 year it will be white.

Making our Uranium Last Longer

- Mining leaner reserves
- Squeezing out more U-235 from "tails" via further enrichment
- Advanced thermal reactor designs to increase efficiency
- Reprocessing increases uranium utilisation and enables MOX usage
- Fast breeder reactors utilise U-238
- Thorium more abundant than uranium

Sustainable use of resources ?

Note: Gas and Oil include speculative reserves; Coal and Uranium do not

Repository considerations

Future Recycling

- Future recycling needs to look and feel different.
- Decouple links to legacy plants and military programmes

Conclusions

- Need an holistic approach to the nuclear fuel cycle
- Saying no to nuclear waste is not an option
- Solutions need to be open, transparent with public consultation
- Volunteerism is essential
- Eventually benefits of fuel recycle need to be addressed