

Energy Efficiency Policy Development Assistance – Views from the countries Mar. 5, 2010, Tokyo, Japan

Energy Efficiency Standards in China: Technical Aspects and Relationship With The Project Activities

Dr. Hongqi LI

College of Environmental and Energy Engineering, Beijing University of Technology No.100, Pingleyuan, Chaoyang District, Beijing 100124, China lihongqi@bjut.edu.cn

Energy Efficiency Standards in China

INTRODUCTION

- 1. Technical support for EE Standards
- 2. Project Activities implemented in China
- 3. Challenges and trends in the future

WHY: technical support researches

- 1. EE Standards are usually simple on seeming
- 2. EE parameters take the core and key positions
- 3. These EE parameters will greatly influence the relevant industries or even destroy them.
- 4. These EE parameters should be hence determined CAREFULLY, based on the across-the-board technical researches

EXAMPLE:	ТҮР
GB12021.3-2004	Wind
room air conditioners	B
	Spli

ТҮРЕ	Refri. Capacity (CC) W	Grade (EER)				
		5	4	3	2	1
Window		2.30	2.50	2.70	2.90	3.10
Split	CC ≤4500	2.60	2.80	3.00	3.20	3.40
	4500 <cc≤7100< td=""><td>2.50</td><td>2.70</td><td>2.90</td><td>3.10</td><td>3.30</td></cc≤7100<>	2.50	2.70	2.90	3.10	3.30
	7100 <cc≤14000< td=""><td>2.40</td><td>2.60</td><td>2.80</td><td>3.00</td><td>3.20</td></cc≤14000<>	2.40	2.60	2.80	3.00	3.20

- 1. Existing products and Market Researches
 - Several thousands AC in market were investigated
 - Technical Specification data including EER and EE grades
 - Prices
 - Customer Cognitive factors

- 2. LCC Analysis
 - Price (rising with EER)
 - Material costs only
 - Material price changes considered
 - Operation Costs (dropping with EER)
 - Electricity price changes considered

副 支容量空调器的产

图 变容量空调器的产

DC-784hours=050

R 6 8 0 2 9 916

- 3. Technical possibility and energy saving potential researches
 - > Theoretical prediction and test verifications
 - Key factors: energy saving technologies in:
 - ✓ Compressor
 - ✓ Heat exchanger
 - System design and optimization
 - ✓ Fan and its motor

- 4. Special researches on some key Technical problems--counterviews
 - Dehumidification vs EER
 - High EER causes poor dehumidification?
 - Energy consumption during material manufactured
 - More materials for High EER causes great energy consumption?
 - Heating operation performance
 - High cooling efficiency resists high heating efficiency?

EXAMPLE: air conditioners

4. Special researches on some key Technical problems

Material	Ore needed	Mining	Mill run	Electrolyzing	Rolling	Total
Copper	151Tons/1Ton	37kWh/Ton	35.8kWh/Ton	7780kWh/Ton	9913kWh/Ton	28677kWh/Ton
Steel	3	396.69kWh/Ton		6033kWh/Ton	1550kWh/Ton	7980kWh/Ton
Aluminium	5	833.5kWh/Ton		15000kWh/Ton 20834kWh/		20834kWh/Ton
6.658	EER rises from grade 5 to grade 2			Energy saving by AC in ten years		
Material	Material increas	ing Energ	gy to produce material		20	S
Copper	3kg	ろう	18		1979kWh	
Steel	1kg	2-	138kWh			
Aluminium	4kg	1	1		- 10	014

- 5. Effect evaluation of energy saving and others
 - > Different energy efficiency level results in different effect
 - A special model was developed to evaluate the benefits of different schemes

EXAMPLE: air conditioners

SPECIAL FOR VARIABLE SPEED AC

- 6. Cooling operation time at different temperatures in cooling operation season—operation time vs temperature curve
 - China AC product standard has defined such a curve, but it departure form the real situation
 - > This curve was revised in EE standard based on the survey of Chinese customer's operation habit
 - Since the curve will influence the SEER value, it should be as close as to customer's operation habit
- 7. The unitive evaluation platform both for constant and variable speed air conditioners
 - Good ideal and exigent wish of AC manufacturers
 - Failed to do so because of poor technical base and accumulations

Small-scale Metering

- 1. Venue: Beijing, Shanghai, Guangzhou
- 2. Tested number: three families per city
- 3. Operation mode: cooling and heating
- 4. Test time: 12 days per mode
- Directly undertaken by IEEJ and assisted by China side
 All-around energy consumption tests on sample families
- Purpose and effect: first hand energy consumption data of Chinese typical families

APF workshop in Tianjin, China

1. Title: Workshop on the energy testing method for Air-Conditioners

2. **Presentations:**

 \triangleright

- Concepts and current situation of energy efficiency standards in Asia -expert from Japan (IEEJ, Mr. Kudo)
- The energy testing method for Air-Conditioners in China (BJUT, Dr.LI Hongqi)
- Manufacturer's view on the energy efficiency trends in the Chinese market (Panasonic)
- Manufacturer's view on the energy efficiency trends in the Chinese marke (Haier)
- Objective of the small sampling study on the energy consumption of typical families (Mr. Sagawa)
 - Study on the energy consumption of typical families (Mr. Sugawara)
- 3. Discussion: Trend of the energy testing method for Air-Conditioners (EER or APF)
- 4. China AC manufacturers were greatly interested and many were supplanted outside due to small meeting room

Workshops on the Lifestyle and Usage of Air-conditioner

- 1. Venue: Beijing, Shanghai, Guangzhou
- 2. Participants:
 - Japanese experts
 - > Responsible persons of small-scale metering in local city
 - > Chinese expert on residential environment
 - > Chinese expert on architecture
 - Local AC customer
 - > Local AC manufacturers
- 3. Discussion: living habit, AC operation situation, building characteristics, etc
- 4. Purpose and effect: deep understandings to Chinese customers and family energy saving. Important support to the policy developments

Beijing University of Technology

Project Activities implemented in China

Large-scale Metering of AC operation

ACTIVITY DESIGN

- > Offset survey limitation with test data
- > 10 typical cities, 50 samples per city, 500 ACs tested
- > Special meter was designed for this purpose
- > Test time: one calendar year
- > Tested parameters:
 - ✓ On/off time of AC
 - ✓ Indoor temperature during AC operation
 - Cumulated energy consumption of AC
 - Cumulated operation time of compressor
 - **Total consumptions (electricity, water and gas) of sample family**
 - **Outdoor temperature hour by hour per city**

温度电量测试仪 0 0 0 2 9 3 8888 电度表 显示窗口 选择确认 调整 中国电器科学研究院 武汉计算机外部设备研究所 I 11 中国空调节能普查联合行动

Data_20091011_00045 - 记事本	
文件(E) 编辑(E) 格式(U) 查看(Y) 帮助(B)	
本次数据采集时间 09-10-11 15:10:57 压缩机累计开机时间: 57 小时38 分21 秒 空调累计开机时间: 106 小时18 分37 秒 空调开机时间: 09-07-11 22:56 温度 31 ℃ 空调关机时间: 09-07-11 23:21 23:06 温度 31 ℃	
23:16 温度 30 C 空调开机时间: 09-07-11 23:41 温度 31 C 空调关机时间: 09-07-12 00:03 23:51 温度 30 C 09:91 温度 30 C	
空调开机时间: 09-07-12 21:59 温度 33 ℃ 空调关机时间: 09-07-12 22:46 22:09 温度 32 ℃ 22:19 温度 32 ℃ 22:29 温度 32 ℃ 22:39 温度 32 ℃	
空调开机时间: 09-07-13 20:49 温度 33 ℃ 空调关机时间: 09-07-13 23:01 20:59 温度 33 ℃ 21:09 温度 33 ℃ 21:29 温度 33 ℃ 21:29 温度 33 ℃ 21:39 温度 33 ℃ 21:49 温度 33 ℃ 22:09 温度 33 ℃ 22:19 温度 33 ℃ 22:29 温度 33 ℃ 22:29 温度 33 ℃ 22:29 温度 33 ℃ 22:39 温度 33 ℃	
王调开机时间: 09-07-14 22:35 温度 33 C 空调关机时间: 09-07-14 23:11 22:45 温度 33 C 22:55 温度 33 C 23:05 温度 32 C	
左调力(10) 目: 09-07-15 03:08 温度 32 ℃ 03:18 温度 32 ℃ 03:28 温度 31 ℃ 03:48 温度 31 ℃ 03:48 温度 31 ℃ 03:58 温度 31 ℃	

Beijing University of Technology

Project Activities implemented in China

SAMPLING

- > Four levels: country, province, city, family
- Country: meteorologic area
- Province: diffusive rate of AC
- City: population, GDP
- > Family:
 - ✓ Income
 - Contruction area of the house
 - ✓ Family structure
 - ✓ Type of AC
 - Direction of room
 - Floor
 - **Building structure**

Beijing University of Technology

EXAMPLE TEST DATA

The relationship between turn-on temperature and running time of a typical bedroom-type users

EXAMPLE TEST DATA

The relation between outdoor temperature and air-onditioner's total running time (from July 21st to August 31st)

The relation curves of outdoor temperature to air-conditioner running time

Challenges and trends in the future

Unitive evaluation platform both for constant and variable speed air conditioners

- 1. Very important task for China due to the co-existing of both ACs
- 2. Very difficult task due to:
 - > Too many influence factors
 - > Poor technical data accumulations
 - > Drastic contention between different technical genres
 - > Great amount of technical researches and test verification are needed
 - Finance limitation
- 3. Principle: both kinds of ACs with same EE data (SEER or APF) should have same energy consumptions
 - Customer convenience during purchasing
 - Justice consideration to different technical genres
- 4. All activities of the project are helpful and useful but more and further work is needed, such as test verifications and simulation analysis

IEEJ: March 2010

Beijing University of Technology

消费者空调器使用习惯入户测试

Thanks for your attention! Thank IEEJ Any questions?

Contact: report@tky.ieej.or.jp